a2 United States Patent
Mukhopadhyay et al.

US009240955B1

US 9,240,955 B1
Jan. 19, 2016

(10) Patent No.:
(45) Date of Patent:

(54) SYSTEM AND ARCHITECTURE FOR
ROBUST MANAGEMENT OF RESOURCES IN
A WIDE-AREA NETWORK
(71) Applicants: Supratik Mukhopadhyay, Baton
Rouge, LA (US); S. Sitharama Iyengar,
Davie, FL. (US)
(72) Inventors: Supratik Mukhopadhyay, Baton
Rouge, LA (US); S. Sitharama Iyengar,
Davie, FL. (US)
(73) Assignee: Board of Supervisors of Louisiana
State University and Agriculture and
Mechanical College, Baton Rouge, LA
(US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35

U.S.C. 154(b) by 208 days.

@
(22)

Appl. No.: 13/938,936

Filed: Jul. 10, 2013
Related U.S. Application Data

Continuation of application No. 13/153,388, filed on
Jun. 3, 2011.

Provisional application No. 61/481,667, filed on May
2,2011.

(63)

(60)

Int. Cl1.
GO6F 15/173
HO4L 12/911
GO6N 99/00

(51)
(2006.01)
(2013.01)
(2010.01)

/~20

\
/

ruwmmmmwwwwﬂ““mm

(52) US.CL
CPC

HO4L 47/70 (2013.01); GO6N 99/005
(2013.01)
(58) Field of Classification Search
None
See application file for complete search history.
(56) References Cited

U.S. PATENT DOCUMENTS

6,237,042 B1* 52001 Kolbccccoovviiiiinine 709/251
7,774,363 B2* 82010 Lim 707/781
2002/0147797 Al* 10/2002 Paul 709/220
2007/0061487 Al* 3/2007 Moore et al. 709/246
2007/0174456 Al* 7/2007 Yellepeddy 709/225
2011/0249551 Al* 10/2011 Rollinsccocvevviivinne. 370/222

* cited by examiner

Primary Examiner — Ryan Jakovac

(74) Attorney, Agent, or Firm — Raymond G. Areaux; J.
Matthew Miller, III; Carver, Darden, Koretzky, Tessier, Finn,
Blossman & Areaux, LLC

(57) ABSTRACT

A system and method of management of communication in a
potentially unreliable wide-area network that contains one or
more nodes connected to said network, each potentially hav-
ing access to one or more inputs and/or outputs and capable of
evaluating said inputs and directing said outputs, a global
address space (GAS) accessible by said nodes, and a commu-
nication system using said GAS that provides communica-
tions between said nodes.

78 Claims, 18 Drawing Sheets

/«10

‘M‘"’ 4{}
5
i

TR —.
H

s

&
rFl

-

U.S. Patent Jan. 19, 2016 Sheet 1 of 18 US 9,240,955 B1

v
0%

g

D
T2
LY

|

A
o
3

|

DN
L
L]

|

FIG. 2

US 9,240,955 B1

Sheet 2 of 18

Jan. 19, 2016

U.S. Patent

40--.,

«
R R R R e R B

H
?
)
3
]
?
¥
¥
]
)
]
]
¥
H
$
%
:
3
2
)
LS
1
8
]
¥
¥
&
&
i
$
]
$
H
t
)
]
*
+
¥
t
$
]
&
]
t
&
'
¥
H
i
:
¢
]
3
L]
¢
L]
?

120

Mm.W~
G .
% ” - t
[] 3
) oy 3
s ﬁ ¥
4 o3 t
- Mm i ’ %
..i..\t\.»tl\..a.i;i! 5
o : M
3 %
3 . .
1 ¥
= i :
¥ 1
3 i
. ¢]
m o oQ oo L % [o s
hle [] 4 Wy s e S w10 ¥
ol R aed - Lt P L el)
¥
] P
4] &
¥ 3
¥ M
[M 8
¥ s
t)
’ % 8
4 Y N %
3 i p 4 M
o« o t s
o % +
s ®
D » M]
A t L4
’ 4]
., 8 $
7] 3
3 4
%]
Lo e - anl
00 gt o B uh S B A AP W U W Y O N A L M VY AR A o W M WO M M Ok GO M oA ot GBSV W S A L R L N
k-
&
o
2l
o

P e R ada

FIG. 3A

US 9,240,955 B1

Sheet 3 of 18

Jan. 19, 2016

U.S. Patent

40--.

by
1
il b L i B

FIG. 3B

U.S. Patent Jan. 19, 2016 Sheet 4 of 18 US 9,240,955 B1

~280~
\\ 240

280

U.S. Patent Jan. 19, 2016 Sheet 5 of 18 US 9,240,955 B1

/300

3580 (‘340
- cé Master Master
Hode Node
330
) o Control Control Controt
Station Station Station
o gy
20
)) 3
o Access Agcess Access
71 Paint Point Point

« = {23 | Sensor]] Sensor}} Sensor Sensori Sansori Sensor Sensor
il 1 310

Sensor

FIG. &

U.S. Patent Jan. 19, 2016 Sheet 6 of 18 US 9,240,955 B1

3350 (%2 364
Sensing
Element {
Transmitter
FIG. 6
/,»372 (374
. Data
Receiver Management
tnit

FIG. 7

U.S. Patent Jan. 19, 2016 Sheet 7 of 18 US 9,240,955 B1

320
N

!)

Transceiver

»

Receiver Smart Card

\3?0 k&&s 39@-«‘/ ((“
-

FIG. 8

U.S. Patent Jan. 19, 2016 Sheet 8 of 18 US 9,240,955 B1

U.S. Patent

Jan. 19, 2016

Sheet 9 of 18

FIG. 10

Conirol Loop

US 9,240,955 B1

510 Retrieve

520 Deploy

|

530 Deactivate

l

540 Unload

U.S. Patent Jan. 19, 2016 Sheet 10 of 18 US 9,240,955 B1

FIG. 11

Logic Loop 600

601 Retrieve

l

Deactlivate 680 Sleep

(]
o
1

o)
il
T
0
)

@

<

621

o
R
S
-
@
)

«
2
@

630 Evaluate

|

640 Store

5
O
2ot
X
£

660 Terminate 621

U.S. Patent Jan. 19, 2016 Sheet 11 of 18 US 9,240,955 B1

FIG. 12

—— 400a

™~
;
[
1
&

e
€20
<

713 ~— 400b

‘.1\ ’ /!,,»vh- oy

730

U.S. Patent

(Lo
<

Jan. 19, 2016 Sheet 12 of 18 US 9,240,955 B1
FIG. 13
@3
970 | 950 | | 960 | | 970

430

800

950 960 970
961
400¢
430 900

U.S. Patent

Jan. 19, 2016 Sheet 13 0f 18
FiG. 14
900 Learning Process
910 Test
920 Predict
930 Transmit
940 Evaluate

US 9,240,955 B1

U.S. Patent Jan. 19, 2016 Sheet 14 of 18 US 9,240,955 B1

ooo

- {' N
: ‘ : -800
s 4 " /"
» :
- - - N
+ + o i
- .
-
= "
*
-
-+
»
x e * Ji
66— 1 T, ferreeerneaarnrans
’ .
. L)
M x -
* »
- » -
. L]
he * [
- * 3
- .
+ i 'S M
+ } * »
+ { . .
* f * [
ﬂliiﬂlliibiubiiinlltélili‘i .
! » .
* L]
/ 65 . ““‘“‘68
A - e -
- L}
810 _ :
» L]
- *
‘ - .
r N "
7 L -
; * i .
S - } .
- . f .
830 “““ L AR R R)
§

69
820

U.S. Patent Jan. 19, 2016 Sheet 15 of 18 US 9,240,955 B1

FIG. 16A

.
.
L
.
=
o
2
~d
e
L
o
o

Lo
L

<«
)
e

972

U.S. Patent

Jan. 19,2016 Sheet 16 of 18
G, 168
440
1010 Join
1020 Leave
1030 Read State

1040 Register Topic

1050 Write Value on Topic

1060 Subscribe

1070 Subscribe with ID

1080 Read New

1090 Read Specific

1100 Delete

1110 Stateful Delete

1120 Garbage Collect

US 9,240,955 B1

U.S. Patent Jan. 19, 2016 Sheet 17 of 18 US 9,240,955 B1

FIG. 16C
420 440 400
— j— 750
760
770
420 440 400
760

U.S. Patent Jan. 19, 2016 Sheet 18 of 18 US 9,240,955 B1

FIG. 17
1200~
i\
20 170
21 H 174d o1
60

\\'\
—
1~
N3
!
.
)
]
n3

.
D
Cad
<>
Er)
B
Cnd
{3]

|
|

US 9,240,955 B1

1

SYSTEM AND ARCHITECTURE FOR
ROBUST MANAGEMENT OF RESOURCES IN
A WIDE-AREA NETWORK

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority from U.S. Provisional
Application No. 61/481,667 (Mukhopadhyay et al.), filed
May 2, 2011, which is incorporated herein by reference as if
set forth in full below.

This application is a continuation of and claims priority to
U.S. Non-provisional application Ser. No. 13/153,388
(Mukhopadhyay et al.), filed Jun. 3, 2011, which is incorpo-
rated herein by reference as if set forth in full below.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to computer net-
works, and relates more specifically to systems and methods
for using network resources.

II. General Background

Computer networks can suffer from a variety of problems
or limitations. In particular, certain computer network appli-
cations require that computers on a network be able to reliably
access, process, evaluate and take action based on informa-
tion acquired by other computers on said network even in
cases where portions of the network become unreliable or
inaccessible.

In view of the foregoing, there is a continuing need for a
system and method of management of communication in an
unreliable wide-area network that contains one or more
resources, including any suitable input or source of informa-
tion, an output that can include any suitable receiver of infor-
mation or a data output device, a global address space (GAS),
and a communication system for resources on the network.

SUMMARY OF THE INVENTION

In view of the aforementioned problems, it is an object of
the present invention to allow computers on a network to
reliably access, process, evaluate and take action based on
information acquired by other computers on said network.

In an exemplary embodiment, the system includes one or
more computers connected to a network. One or more of the
computers connected to said network also contain instru-
ments to measure the environment. In addition, one or more
of the computers connected to said network also contain
devices to take action on the environment.

In an exemplary embodiment, one or more of the comput-
ers connected to said network are specially programmed to
contain (1) a moderating component which controls other
processes of said computer; (2) an evaluating component
which accesses available information and takes action based
on internal logic; (3) a GAS which provides information to
the evaluating component and coordinates the distribution of
information through the GAS to other computers in the net-
work; and (4) a communications component which passes
information from the evaluating component to the GAS and
provides the evaluating component access to information
from the GAS.

The above and other objects and features of the present
invention will become apparent from the drawings, the
description given herein, and the appended claims.

In an exemplary embodiment, one or more of the following
features may be found:

15

30

40

45

50

65

2

a plurality of networked nodes, each node comprising: a
computer, a data store for providing access to a global
address space, and a logic process

a communication system for communication between said
nodes

said communication system transmits information
between said nodes through said data stores

each data store contains a local copy of all information
available to said data stores

said logic processes communicate via said communication
system

said data stores are key-value stores

one or more inputs and one or more outputs, wherein each
logic process has the capability (1) to read data acquired
by an input communicably connected to said logic pro-
cess; (2) to publish data to said communication system;
(3) to retrieve and evaluate data from said communica-
tion system; and (4) to control one or more outputs
communicably connected to said logic process

said capability to evaluate data can be altered

said alteration occurs as said logic process is reactivated.

said system has the capability to activate and deactivate
said logic processes

one or more of said logic processes can be deactivated and
reactivated without information loss

achange in information that occurs in one data store causes
the same change in information to occur in all of said
data stores

said data stores are configured to form a pattern

said change of information occurs in a sequence deter-
mined by said pattern

said pattern is a ring

said pattern is a multiring

said sequence results in said change of information being
communicated from one data store to only one other data
store

any two data stores can be transposed in said multiring

a testing module that can perform a test of resource utili-
zation of said nodes or said network or of both said nodes
and said network, wherein said data store can prevent
communication of said change to other data stores based
on the results of said test

said test comprises the steps of (1) recording the current
time; (2) attempting transmission of one or more test
packets to the next data store in said pattern; (3) mea-
suring, for each test packet received by said next data
store, the current resource utilization of said next data
store; (4) recording, in each test packet, said current
resource utilization; (5) repeating said measuring,
attempting, and recording steps for each data store in
said pattern; and (6) collecting all of said test packets
that are received and retransmitted by all of said data
stores

said test packets are transmitted only around one subring of
said multiring

said test packets are transmitted to less than all of said data
stores

a learning module, wherein said learning module can learn
from said tests

said learning module can predict resource utilization

said data store can prevent communication of said change
to other data stores based on predictions made by said
learning module

said learning module learns using a machine learning algo-
rithm

said machine learning algorithm is suitable for a high-
dimensional setting

US 9,240,955 B1

3

said machine learning algorithm is Vapnik’s Support Vec-
tor Machine algorithm

BRIEF DESCRIPTION OF THE DRAWINGS

For a further understanding of the nature and objects of the
present invention, reference should be had to the following
description taken in conjunction with the accompanying
drawings in which like parts are given like reference numerals
and, wherein:

FIG. 1 is a block diagram of an embodiment of a shell for
using network resources in connection with an output device.

FIG. 2 is a block diagram of another embodiment of a shell
for using network resources in connection with an output
device.

FIG. 3A is a block diagram of another embodiment of a
shell for using network resources in connection with output
devices, and depicts components of the shell.

FIG. 3B is a block diagram of another embodiment of a
shell for using network resources in connection with output
devices.

FIG. 4 is a schematic diagram of an embodiment of a coast
guard system configured for coordinated use of network
resources.

FIG. 5. is a block diagram of an embodiment of a multi-
level system that includes a plurality of sensors.

FIG. 6. is a block diagram illustrating at least a portion of
an embodiment of a sensor that includes a wireless transmit-
ter.

FIG. 7 is a block diagram illustrating an embodiment of a
wireless receiver.

FIG. 8 is a block diagram of an embodiment of an access
point that includes a wireless receiver, a smart card, and a
transceiver.

FIG. 9 is a block diagram depicting portions of an embodi-
ment of a shell for using network resources in connection with
output devices.

FIG. 10 is a flow chart showing a process by which a
control process receives and acts on control messages.

FIG. 11 is a flow chart showing a process by which a logic
process receives, evaluates, and acts on information from
Sensors.

FIG. 12 is a block diagram depicting an embodiment of
values stored in a global address space.

FIG. 13 is a block diagram depicting an embodiment of a
global address space configured in a ring pattern.

FIG. 14 is a flow chart illustrating a process used by a
global address space for predicting network congestion.

FIG. 15 is a block diagram depicting an embodiment of a
global address space configured in a multi-ring pattern.

FIG. 16A is a block diagram illustrating a logic process
communicating with a data store via a communication sys-
tem.

FIG. 16B is a block diagram illustrating a group commu-
nication system.

FIG. 16C is a block diagram illustrating how a group com-
munication system uses a global address space.

FIG. 17 a schematic diagram of an exemplar embodiment.

DETAILED DESCRIPTION OF THE INVENTION

This application incorporates by reference the specifica-
tion of United States Patent Application Publication Number
US 2009/0222921 (Mukhopadhyay et al.), filed Feb. 29,
2008.

As used herein, the terms “node” and “host” are used
interchangeably to mean a general purpose computer particu-

10

15

20

25

30

35

40

45

50

55

60

65

4

larly programmed to carry out the tasks as stated herein,
wherein each general purpose computer is connected to a
network and also includes a data storage device.

As used herein, the terms “instrument” and “input” are
interchangeable and mean any device, now known or herein-
after invented, which is capable of acquiring information
from the environment. The definition of “instrument” as well
as “input” includes, but is not limited to, devices that measure
pressure, heat, conductivity, one or more frequencies of elec-
tromagnetic radiation (including, without limitation, visible
light and microwave radiation), moisture, the presence of
elements or combinations of elements on the periodic table,
and the presence of complex molecules or portions thereof
(including proteins, viruses, DNA molecules). As such, this
definition includes, but is not limited to, an accelerometer, an
ammeter, an anemometer, a caliper, a calorimeter, a DNA
sequencer, a dynamometer, an electrometer, an electroscope,
an electrostatic analyzer, a gravimeter, an hygrometer, an
inclinometer, an interferometer, a magnetograph, a magne-
tometer, a mass spectrometer, a micrometer, a microscope, an
ohmmeter, an oscilloscope, a seismometer, a spectrogram, a
spectrometer, a telescope, a thermocouple, and a voltmeter.
This definition also includes combinations of instruments or
inputs configured to provide more complex information. For
example, this definition includes a device that determines
whether a door is open or closed, and it also includes com-
puter systems capable of face recognition.

Asused herein, the terms “actuator” and “output” are inter-
changeable and mean anything that is capable of causing
change in the environment. This definition includes, but is not
limited to, solenoid valves powered by electricity or hydrau-
lics, and may include a combination of actuators and other
devices which, when used together, can effect change on the
environment.

As used herein, the term “global address space” or “GAS”
means one or more computers connected via a network and
particularly programmed and configured to make a mutable
set of data available to computers connected to the network.
In certain embodiments, said computers may be configured to
make a mutable set of data available make all of said data
locally available to each computer that is part of the GAS. A
distributed key-value store is one example of a GAS, but other
technologies may be used. For example, relational databases
configured with replication may be configured such that they
provide a GAS. Also, multiprocessor systems such as high
performance computing systems may be configured in a
shared memory environment to provide a GAS.

As used herein, the term “API” means “application pro-
gramming interface” and has its usual understood meaning to
those skilled in the art.

The embodiments of the disclosure will be best understood
by reference to the drawings, wherein like parts are desig-
nated by like numerals throughout. It will be readily under-
stood that the components, as generally described and illus-
trated in the Figures herein, could be arranged and designed in
awide variety of different configurations. Thus, the following
more detailed description of the embodiments of the system
and method of the disclosure, as represented in FIGS. 1-17 is
not intended to limit the scope of the disclosure, as claimed,
but is merely representative of possible embodiments of the
disclosure.

Much of the infrastructure that can be used with embodi-
ments disclosed herein is already available, such as: general
purpose computers; computer programming tools and tech-
niques; computer networks and networking technologies;
wireless communications; and digital storage media.

US 9,240,955 B1

5

Suitable networks for configuration and/or use as
described herein include one or more local area networks,
wide area networks, metropolitan area networks, ham radio
networks, and/or Internet Protocol networks such as the
World Wide Web, a private Internet, a secure Internet, a value-
added network, a virtual private network, an extranet, an
intranet, or even standalone machines which communicate
with other machines by physical transport of media. In par-
ticular, a suitable network may be formed from parts or entire-
ties of two or more other networks, including networks using
disparate hardware and network communication technolo-
gies. A network may incorporate wired or land line commu-
nication such as FEthernet over twisted pair, T-carrier, or other
wired communications technologies. A network may also
incorporate wireless communications technologies such as
GPRS, EDGE, EV-DO, HSPA, HSDPA, and technologies
based on the IEEE 802.11 set of standards.

The network may include communications or networking
software such as software available from Novell, Microsoft,
Artisoft, and other vendors, and may operate using TCP/IP,
SPX, IPX, and other protocols over twisted pair, coaxial, or
optical fiber cables, telephone lines, satellites, microwave
relays, modulated AC power lines, physical media transfer,
and/or other data transmission “wires” known to those of skill
in the art. The network may encompass smaller networks
and/or be connectable to other networks through a gateway or
similar mechanism.

Suitable networks can include a server and several clients;
other suitable networks may contain other combinations of
servers, clients, and/or peer-to-peer nodes, and a given com-
puter may function both as a client and as a server. Each
network can include one or more computers, such as the
server and/or clients. A computer may be a workstation, lap-
top computer, disconnectable mobile computer, server, main-
frame, cluster, so-called “network computer” or “thin client”,
mobile telephone, personal digital assistant or other hand-
held computing device, “smart” consumer electronics device
or appliance, or a combination thereof.

Suitable networks can also include one or more physical
sensors and/or physical actuators that either communicate
with nodes of a network or are themselves nodes of the
network. For example, a network can include a wireless sen-
sor network of physical sensors. Physical sensors can include
one or more motion sensors, heat sensors, chemical sensors,
moisture sensors, photo detectors, or any other suitable data-
gathering device configured to sense a physical quantity. The
physical sensors can deliver information regarding a physical
quantity to the network in any suitable manner, such as by
electrical or light signals. Physical actuators can be config-
ured to receive instructions from the network and to produce
aphysical action as a result. For example, the physical actua-
tors can include one or more motors, triggers, solenoids, or
other suitable devices.

Each computer of a network may include a processor such
as a microprocessor, microcontroller, logic circuitry or the
like. The processor may include a special purpose processing
device such as an ASIC, PAL, PLA, PLD, Field Program-
mable Gate Array, or other customized programmable device.
The computer may also include a memory such as non-vola-
tile memory, static RAM, dynamic RAM, ROM, CD-ROM,
disk, tape, magnetic, optical, flash memory, or other computer
storage medium (which memory can store computer soft-
ware). It is understood that the computer may run software
that is stored in such a computer readable medium. The com-
puter may also include various input devices and/or output
devices. The input device(s) may include a keyboard, mouse,
touch screen, light pen, tablet, microphone, sensor, or other

25

30

40

45

55

6

hardware with accompanying firmware and/or software. The
output device(s) may include a keyboard, mouse, touch
screen, light pen, tablet, microphone, sensor, or other hard-
ware with accompanying firmware and/or software.

Aspects of certain of the embodiments described are illus-
trated as software modules or components. As used herein, a
software module or component may include any type of com-
puter instruction or computer executable code located within
amemory device and/or transmitted as electronic signals over
asystem bus or wired or wireless network. A software module
may, for instance, comprise one or more physical or logical
blocks of computer instructions, which may be organized as a
routine, program, object, component, data structure, etc., that
performs one or more tasks or implements particular abstract
data types.

In certain embodiments, a particular software module may
comprise disparate instructions stored in different locations
of'a memory device, which together implement the described
functionality of the module. Indeed, a module may comprise
a single instruction or many instructions, and may be distrib-
uted over several different code segments, among different
programs, and across several memory devices. Some embodi-
ments may be practiced in a distributed computing environ-
ment where tasks are performed by a remote processing
device linked through a communications network. In a dis-
tributed computing environment, software modules may be
located in local and/or remote memory storage devices. In
addition, data being tied or rendered together in a database
record may be resident in the same memory device, or across
several memory devices, and may be linked together in fields
of a record in a database across a network.

The software modules tangibly embody a program, func-
tions, and/or instructions that are executable by computer(s)
to perform tasks as described herein. Suitable software, as
applicable, may be readily provided by those of skill in the
pertinent art(s) using the teachings presented herein and pro-
gramming languages and tools including, but not limited to,
XML, Java, Python, PHP, Pascal, C++, C, database lan-
guages, APIs, SDKs, assembly, firmware, microcode, and/or
other languages and tools. Suitable signal formats may be
embodied in analog or digital form, with or without error
detection and/or correction bits, packet headers, network
addresses in a specific format, and/or other supporting data
readily provided by those of skill in the pertinent art(s).

Networks can suffer from a variety of problems or limita-
tions. In particular, collaboration and coordination among
various components of a given network can pose a variety of
challenges, particularly for heterogeneous networks. For
example, some networks include disparate sensing, comput-
ing, and/or actuating devices that interface via wired and/or
wireless connections and/or that run on different platforms
(for example, but not limited to, on different operating sys-
tems). Such networks are widely used in healthcare, military,
automobile, building security, and space industries, among
other, which often depend upon reliable delivery of service
from elements of the network and upon secure and trustwor-
thy exchange of information among network elements. Reli-
ability and security are often complicated by such matters as
timing requirements, security requirements, and/or fault tol-
erances of service and/or devices.

A variety of complications can arise in such networks. For
example, clients or services can migrate from one physical
location to another, which can complicate failure semantics.
Clients or services may operate in limited resource environ-
ments (for example, but not limited to, on PDA’s, cellular
phones, Arduino systems, or other embedded systems) hav-
ing bandwidth limitations and/or shortage of space or other

US 9,240,955 B1

7

resource limitations. In some instances, clients or services
may communicate different types of data (e.g., voice infor-
mation, multimedia information, etc.) through communica-
tion channels that are unreliable, are susceptible of eaves-
dropping, and/or conform to differing standards (e.g., 802.11,
Zigbee, Land Mobile Radio (LMR), etc.). The exchange of
information in some networks can involve passing messages
that include semi-structured data, the integrity of which may
be compromised due to the presence of possible faults or
breaches in the network. Indeed, the diverse platforms, com-
puting elements, and/or sensing elements of some networks
may provide heterogeneous, semi-structured data having
untraced or uncertified pedigrees, and individual nodes or
even entire subnetworks of a given network may fail or be
compromised.

Various embodiments described herein address some or all
of'the foregoing issues, as well as others that may or may not
be discussed below. For example, in some embodiments, a
coordination layer is provided that permits reliable commu-
nication between resources and output devices in a heteroge-
neous network. The coordination layer can promote the con-
formance of services and information exchanged over the
network to the goals of a user and/or can promote observance
of the performance desires that a user wishes for a system to
exhibit. For example, in some embodiments, the coordination
layer provides formal guarantees that user-defined system
objectives and quality of service requirements are met. In
some embodiments, the coordination layer can respond to
diverse local policies governing computation and communi-
cation in individual computing elements and local networks,
as well as changes to a network (such as failures or compro-
mises of individual nodes of subnetworks). In some embodi-
ments, the coordination layer can dynamically adapt to
changes in the network, such as failures or security breaches
of individual services or devices, and can automatically pro-
vide for the successful achievement of the goals or objectives
of the network (which in some instances, are user-defined).
Other features and advantages of various embodiments are
described below and will be apparent to those of skill in the art
from the disclosure herein.

In one embodiment, a distributed hash table (DHT) is used
asthe GAS, and the GAS uses a synchronization algorithm to
coordinate the distribution of information across multiple
devices. The DHT may also be thought of as a data store
which provides GAS access. Instances of the DHT are con-
figured to communicate with only two other instances. In
these embodiments, the instances of the DHT self-arrange
into a ring (one example of a pattern), whereby information is
passed in one direction from instance to instance until all
instances receive the communicated information. This behav-
ior is part of generic DHT algorithms. It has been observed
that this embodiment, inherent of generic DHT algorithms,
cannot detect when either the nodes on the network or the
network itself becomes congested or over utilized. In addi-
tion, we speculate that a generic DHT configured in a circular
message passing (single ring) configuration does not perform
well when configured in a network of more than 80 instances.

In one embodiment, the DHT may be the distributed trans-
actional key-value store known as Scalaris. In this embodi-
ment, the synchronization algorithm used is a non-blocking
implementation of Lamport’s Paxos algorithm.

In another embodiment, a generic DHT has been modified
by us to test network and node congestion before passing
information to another node. This improvement over known
DHT implementations improves resource efficiency and
allows for greater scalability. The quality control test com-
prises the steps of sending approximately 10to 15 test packets

15

40

45

8

along the ring of instances. However, more or less test packets
may be used. As each instance of the DHT receives the test
packet, said instance measures its recent resource use. This
may occur, for example, by requesting the operating system
to report a Unix-style load calculation known as a load aver-
age. Hach instance records its resource use measurement in
the test packet, which is then communicated to the next
instance. As each test packet returns to the tester, the testing
instance of the DHT (1) measures the time to traverse the
network; (2) determines how many of the test packets return;
and (3) calculates overall CPU resource utilization based on
the measured CPU resource usage reported in each test
packet. Based on this information, the testing instance of the
DHT determines whether it is appropriate to send the infor-
mation at the present time or whether it should wait for
resources to become free before sending. However, it has
been observed that, for certain configurations, current overall
resource use does not accurately predict future overall
resource use. In other words, a goal of measuring overall
resource use is to attempt to use resources when resource use
is low. In certain configurations, overall resource use may
vary rapidly, for example, from relatively high usage at time
1, to relatively low usage at time 2, and then back to relatively
high usage at time 3. In such a situation, a measurement of
overall resource use at time 2 would suggest that current use
is low. If the instance of the DHT then sends information at
time 2, this message compounds the high network use at time
3.

Accordingly, another embodiment has been modified by us
to use Vapnik’s Support Vector Machine (SVM) algorithm
with feedback to predict, based on observed patterns of over-
all resource usage, whether the instance of the DHT should
use overall resource resources by communicating a message
to another instance of the DHT. This improvement over
known DHT implementations improves resource efficiency
and allows for greater scalability. In this embodiment, before
the DHT begins operations, the learning algorithm is primed
with random data. As the DHT runs, each time an instance of
the DHT tests the network, the then current resource utiliza-
tion status is recorded and the learning algorithm is asked to
determine whether resource use will be high or low based on
the current and previously recorded states. The learning algo-
rithm is given feedback in the form of subsequent observa-
tions of resource utilization, which is used by the learning
algorithm to make more accurate predictions. Although Vap-
nik’s SVM algorithm is used in this embodiment, it is under-
stood that a wide variety of machine learning algorithms may
be used such as, for example Bayesian classifiers, hidden
Markov models, and neural networks. Also, machine learning
algorithms enabled by Waikato Environment for Knowledge
Analysis (WEKA) may be used.

Because we speculate that certain configurations of DHT's
do not perform well when configured in a network of more
than 80 instances, another embodiment of the invention over-
comes this limitation of DHTs by self-arranging into multiple
connected communications rings. This improvement over
known DHT implementations improves resource efficiency
and allows for greater scalability.

In another embodiment, the GAS is a DHT (again, which
may be thought of as a data store) which allows for retrieval of
information based on key ranges or intervals. In addition, the
DHT may be Scalaris as modified to allow for retrieval of
information based on key ranges or intervals.

In certain embodiments, the system clocks of hosts are
synchronized. Although it is understood that any number of
time synchronization protocols such as the Network Time
Protocol (NTP) may be used, in a preferred embodiment, a

US 9,240,955 B1

9

decentralized network time (DNT) algorithm is used. DNT
algorithms are preferred because we perceive NTP to require
centralized resources, whereas DNT algorithms do not.
Accordingly, use of DNT algorithms enhances the availabil-
ity and reliability of the group communication system. In
certain embodiments, hosts collectively select one host to set
the current time for all hosts. In certain embodiments, the host
chosen by the group ofhosts to set the time is the host with the
earliest time. In certain embodiments, hosts communicate
time through the GAS. In addition, the DNT algorithm may
be Mattern’s GVT algorithm, GVT algorithms based on Mat-
tern’s GVT algorithm, or other GVT algorithms such as the
TQ-GVT algorithm described by Chen et al.

An embodiment of the invention includes a framework for
conducting asynchronous communications. Processes may
use this framework to communicate with other processes via
the GAS, which may provide access to atuple space similar to
that of the Linda coordination language developed at Yale
University by David Gelernter and Nicholas Carriero. In one
embodiment, the GAS may provide access to the tuple space
via a DHT. This framework allows processes to form, join,
and leave groups, keeping track of group membership and
consistency data in the tuple space. This framework also
allows for processes to publish information to, or read infor-
mation from, the tuple space. The framework also allows for
information to be sequentially ordered and time stamped.
Accordingly, information transmitted by the framework into
the tuple space may include associated sequential order infor-
mation and may include an associated time stamp provided by
a DNT or other time synchronization algorithm. Processes
may also remove information that is no longer needed by the
framework in a process of garbage collection. The commu-
nications framework provides asynchronous communication
capability, allowing components of the system to continue
operation when communications become unreliable or cer-
tain components become unreachable over the network. As
described more completely herein, the communications
framework, in conjunction with other improved components
of'the system, allows for dynamic reconfiguration of compo-
nents of the system.

The group communications framework (also a group com-
munications system or an integrated communication frame-
work) as described herein, together with the GAS, act
together as middleware. There are a number of projects taking
various approaches to implementing this type of middleware.
Each of these projects or approaches have a number of char-
acteristics, such as consistency, availability, tolerance to net-
work partitions, tolerance to nodes continuously leaving and
joining the system, reconfigurability, and timely response.
These characteristics are described as follows:

Partition Tolerance

A communication system is tolerant to network partitions
if there is a network failure that splits the processing nodes
into, for example, two groups that cannot talk to each other,
but both subgroups continue to operate and process data
independently until the partition is removed. In other words,
a partition tolerant system continues to operate despite arbi-
trary message loss, which may partition the system into two
or more groups. In our opinion partition tolerance is a good
property for all communication systems.

A partition happens when there is a network failure that
results in a communication gap between two nodes or groups
of' nodes in a system. A communication system is said to be
tolerant to network partitions if, whenever there is any split in
the communicating nodes due to network failure which cre-

5

10

15

20

25

30

35

40

45

50

55

60

65

10

ates subgroups of nodes, then the nodes in each subgroup
continue to process information.

In a communication system, there will generally be three
types of communication: node to node, node to a group of
nodes, and between groups of nodes. So, for example, when
there is a failure in the network which may cause interruption
in communication between two groups of nodes, the indi-
vidual groups (noting that a group may contain one or more
nodes) will continue to operate independently in a partition
tolerant system. Therefore, a system tolerant to network par-
titions may experience arbitrary message loss but continue to
operate.

Churn Tolerance

When a node joins a group communication system, the
system will generally have to reconfigure itself in order to
incorporate the node into the system. This process may
require system resources, and the reconfiguration may cause
delays in communication among nodes already part of the
system. Systems (and in particular, systems with many nodes)
may have some nodes leave and other nodes join the system
with high frequency. The ability to handle these changes
efficiently is known as churn tolerance. We believe that churn
tolerance is an important characteristic for all systems, but is
less important for fixed networks.

Reconfigurability

A group communication system is said to be reconfig-
urable if its behavior can be dynamically modified. For the
purposes of this property, this includes modification to a
processing component of the system, such as a portion of a
computer containing a software object compiled into execut-
able bytecode. A component can be modified while running
or can be removed from the system, modified, and continue
processing without missing any messages. It is our opinion
that reconfigurability is a good property for all communica-
tion systems, but is very desirable in systems used for explor-
atory, military, or expeditionary purposes or in other situa-
tions where there is an unknown or uncertain environment.

Timely Response

A group communication system should respond to mes-
sages in a timely fashion. Although the term “timely” may
have a number of definitions in the art, we use the term timely
to mean “faster than a human can calculate,” and, more par-
ticularly, we use the term timely to mean that events detected
by inputs or instruments can be evaluated and, where appro-
priate, acted upon (for example, by actuators), almost
instantly. This may be accomplished, for example, where
information is received, evaluated, and acted upon within, for
example, less than 100 milliseconds. We believe that timely
response is significantly important for all systems.

Because ofhow certain embodiments of this invention may
be implemented (in particular, because of network disconnec-
tions and congestion), all components of the system may not
always act timely. This is because where an input is received
by a first node and the first node sends a message to a second
node across a network, but a network disconnection causes
said message to temporarily not reach said second node, then
said second node cannot react to said input received by said
first node “timely.” However, said second node will still react
timely to said input when the network disconnection or con-
gestion is resolved, the partition event is over, and said second
node receives the message.

US 9,240,955 B1

11

Relational Operations

Relational operations are database tables which have data
ordered and organized on the basis of different common char-
acteristics in the form of tables. For example, data may be
organized in third normal form. We believe that relational
operations are essential to, for example, enterprise manage-
ment systems, banking systems, employee record systems,
enterprise resource planning (ERP) systems, and customer
relationship management (CRM) systems.

Consistency

A communication system containing the nodes in a distrib-
uted computing environment is said to be consistent when
each node in the system is consistent. Briefly, nodes are
consistent where they contain the same information. A com-
munication system may be consistent where it promises to
have the familiar all-or-nothing semantics (i.e., a message
must be received by all recipients before any can accept and
process the message). Many systems achieve consistency via
this all-or-nothing approach. In addition, some systems may
also require that all messages be received and processed in
order (i.e., no message reordering). The nodes in the system
are said to be consistent if all nodes in the system have
available the identical set of information. This may be
achieved where:

all nodes in the system receive and accept the message in

the same order; or

either all nodes in the group will receive the message or

none of them will receive the message.
In addition, when a node leaves or joins a communication
system that is consistent, every node which is already a mem-
ber of the system is notified of the update.

Availability

A communication system is said to be highly available
when the system continues to operate even though there may
be one or more failures in the system (such as, for example,
failures of individual sensors, individual nodes, or network
communications links). In a highly available system, node
failure should not prevent other nodes from continuing to
operate. Ifthere is a failure in the node, then the system should
have some type of contingency planning, such as switching to
another node, to keep the overall system running.

In other words, we believe that a highly available group
communication system should not have centralized compo-
nents with a single point of failure. This is because where a
group communication system has centralized components,
the failure of any such centralized component can cause the
entire system to shut down. Accordingly, we believe that
highly available systems should be decentralized rather than
centralized.

Brewer’s CAP Theorem

According to the Brewer’s CAP theorem, it is not possible
for a distributed system to achieve the properties of consis-
tency, availability, and tolerance to network partitions.
Although some approaches attempt to approach achieving all
three properties by relaxing the restraints required by one of
the properties, it is our understanding that achieving such a
relaxed set of goals is especially difficult in an asynchronous
environment.

Although embodiments of the invention disclosed herein
do not contradict Brewer’s CAP theorem, the properties of

10

20

25

35

40

45

55

65

12

consistency, availability, and tolerance to network partitions
are achieved together by relaxing one of the three objectives.
The approach taken by the invention disclosed herein relaxes
one of the objectives: consistency. This is because, in our
view, the other two objectives cannot be compromised by the
distributed system in an asynchronous environment. There-
fore, embodiments of the disclosed invention achieve all three
properties by relaxing the consistency objective and replacing
it with “eventual consistency.”

“Eventual consistency” means that over a long time period
where no updates are sent all updates will eventually propa-
gate to all nodes and all the nodes will be consistent. In other
words, all information eventually reaches all nodes, but there
may be a delay. The time period for that delay will depend on
available resources, the demand on those resources, and the
duration of any network outages.

Existing Group Communication Systems

Group communication systems provide the communica-
tion medium between the nodes (users) in a network. They
may be implemented over synchronous or asynchronous net-
works. We note the term asynchronous may have many mean-
ings when used in connection with computer networks. As
used herein to describe improvements of the invention dis-
closed herein, asynchronous means that transmission of a
message is decoupled from receipt of said message. For
example, in a synchronous network, the sender of a message
transmits a message to a receiver only when the receiver is
connected to the network and is currently ready to receive it
(that is, the sender waits for the receiver to be ready). In an
asynchronous network, the sender sends the message to the
receiver without regard for whether the receiver is connected
to the network or is ready to receive the message. A group
communication system provides a communication layer
between the sender and receiver, and ensures the messages
are delivered accordingly with the desired properties (for
example, synchronous or asynchronous semantics, message
ordering, or other properties). There are some prominent
group communication tools such as:

ISIS (Birman et al.)

Spread (Amir et al.)

JGroups (Commercial implementation in Java underlying

the JBoss middleware)

Based on our review of ISIS, Spread, and JGroups, we
believe that these provide group communication in a synchro-
nous environment. They are built on the top of TCP/IP or
UDP protocols. The key features they provide are virtual
synchrony and consistency. Virtual synchrony is a property
that allows nodes in a group communication system to form
process groups for the purpose of organizing the transmittal
of messages. Every node in a process group receives each
message sent to the process group to which it belongs. Addi-
tionally, each message sent to a process group is received by
each node in said process group in the same order in which
said messages are sent. Group communications which imple-
ment virtual synchrony achieve the properties of data repli-
cation, fault tolerance, event notification and caching. Con-
sistency as provided in these systems has the same meaning as
described herein. That is, all the nodes in a network are
consistent such that, when any node alters data in one node,
the updated information is clearly visible to the other nodes in
the network. It is our understanding that in these systems,
each ofthe nodes will see the messages in the same order and
that either all nodes receive a message or none of the nodes
receive a message. Furthermore, if nodes are in a group, then
if one node receives a message then each node in that group

US 9,240,955 B1

13

will receive that message; and, if any one node in a process
group cannot receive a message, then no other node in the
process group will receive the message. Thus, as we under-
stand ISIS, Spread, and JGroups, they implement “all or
nothing” semantics.

ISIS

The ISIS group communication tool is developed at Cor-
nell University. It is our understanding that this tool imple-
ments a group communication system using the virtual syn-
chrony approach. We understand that there are four different
process groups implemented in ISIS, and each process group
differs in how it implements group interactions. The four
groups are: peer groups, client groups, diffusion groups and
hierarchical groups.

Peer groups are comprised of processes which contain
replicated data, which is given as input to algorithms
processing concurrent data.

Client groups contain nodes which attempt to communi-
cate with any process group with a group name and
proper authorization. The process group makes that
node a client to the group by registering it with the group.
Nodes registered with a group may communicate with
that group.

Diffusion groups are groups of nodes depicting the client
server architecture. Client nodes interact with server
nodes by giving input and getting desired output from
the server nodes.

Hierarchical groups contain one or more process groups.
There will be one base group root which can have other
groups, called sub groups, under it.

ISIS nodes may or may not aware of one another. ISIS
implements message delivery ordering rather than imple-
menting the causal relationship between messages. As men-
tioned earlier, multiple modules are allowed to form a group
under a group name and any message transmitted to the group
will be received by all the nodes in that group.

Spread Group Communication Toolkit

The Spread wide area group communication system (Amir
etal.) is developed at Johns Hopkins University. Spread com-
prises two low level protocols: ring and hop. The ring protocol
is implemented on local area networks. The hop protocol is
implemented on wide area networks. Furthermore, Spread
implements a daemon-client architecture. In this architecture,
group membership updates are done with minimal effort.
When any node joins or leaves a group, this fact is commu-
nicated to others in the network via a single message. How-
ever, when there is network partition between nodes of a local
area network, the membership update message causes a fully-
fledged change in that node’s group membership. We under-
stand that Spread implements an “extended” form of virtual
synchrony. This means that messages are transmitted even
though messages may be lost using a variant of the alternating
best protocol. Data is transmitted to the network via a neces-
sary minimal set of components. Users have control over the
Spread group communication system such that a message
may be sent with priority over other messages transmitted in
the network. Another prominent feature of this group com-
munication system is that any node which is not a member of
the group can transmit the message to the whole group.

JGroups

JGroups is a commercial implementation of a group com-
munication system written in Java and is an underlying part of

15

20

35

40

45

65

14

the JBoss middleware. JGroups is a group communication
system which implements so called reliable multicast com-
munication. In JGroups, groups containing nodes can be cre-
ated and deleted. The nodes are spread across local area
networks and wide area networks. When each node joins or
leaves the group, all other nodes in a group are notified.
Messages may be one of two types: node to node and node to
group. JGroups can implement different protocols like User
Datagram Protocol (UDP), Transmission Control Protocol
(TCP) and Java Message Service (JMS). Large messages are
subjected to fragmentation and are encrypted when required.
If'there is any message loss, then the message is retransmitted.
Another important feature of JGroups is failure detection,
which removes disconnected nodes from any groups to which
they belong.

Problems with Existing Group Communication
Systems

Group communication systems may have a large number
of' nodes and may have nodes which are connected by either
local area networks (LAN), wide area networks (WAN), or
other suitable networks as described herein. Group commu-
nication systems comprised of a large number of nodes con-
nected via a network that may experience outages or conges-
tion are inherently asynchronous and are therefore more
suited for asynchronous communication systems. Accord-
ingly, we have identified the following list of problems with
existing group communications systems when used in such
environments:

The existing group communication systems which are dis-

cussed above appear to us to be synchronous.

Existing group communications systems which are syn-
chronous are not suitable for asynchronous environ-
ments.

The existing group communication systems which are dis-
cussed above appear to be centralized, having a single
point of failure (i.e., failure of one node can cause failure
of the whole system).

The existing group communication systems which are dis-
cussed above appearto us to have components which are
not completely aware of all other components in the
system. For example, in ISIS the nodes in the system
may or may not know about the existence of other nodes
in the system.

In the existing group communication systems discussed
above, whenever a component gets disconnected, the
messages directed to it may be lost during the discon-
nection. For example, as we understand the Spread, the
Spread group communication system experiences the
loss of messages due to component failure and other
various reasons.

In the existing group communication systems discussed
above, these systems have only two of the three proper-
ties discussed by Brewer’s CAP theorem.

In addition to ISIS, Spread, and JGroups, which are
described immediately above, there are a number of other
projects and approaches to this type of middleware. These
include Data Distribution Service (used by, for example,
United States Navy state-of-practice); Reliable Multicast
(used by, for example, Isis, SPREAD, and Astrolabe); Big-
Table (used by, for example, Google); Cassandra (used by, for
example, Facebook); CouchDB (provided by, for example,
the Apache Project); Distributed Hash Tables (in the form
used by, for example, Kademlia, Chord, and Pastry); Dynamo
(used and provided by, for example, Amazon); Gizzard (used
by, for example, Twitter), and JGroups (used by, for example,
Jboss). A summary of these middleware options and our view
of their features is included below.

US 9,240,955 B1

15 16
TABLE A-1

Partition Churn Reconfig- Timely
Approach Consistency — Availability Tolerance Tolerance urability response
Data No No No No No Yes
Distribution
Service
Reliable Not No Yes No Not Yes
Multicast available available
BigTable No Yes Yes No No No
Cassandra No Yes No No Yes No
CouchDB Yes No No No Yes No
Distributed No No No No Yes Yes
Hash Table
Dynamo No Yes Yes No Yes No
Gizzard No Yes Yes Yes No Yes

The discussions herein commenting upon other projects
and the characteristics thereof contain our opinion and are
based on our own review of these projects.

Our improvement over existing middleware approaches is
that portions of the invention as described herein have all the
desired properties—consistency, availability, tolerance to
network partitions, churn tolerance, reconfigurability, and
timely response. In particular, when a group communication
framework is implemented to utilize a GAS, the combination
thereofhas all of these properties and is an improvement over
these currently-used approaches.

DETAILED DESCRIPTION OF THE DRAWINGS

As depicted in the figures, lines connecting components
may designate a direction. These directional signals are pro-
vided to assist in the understanding of the invention, and are
nonlimiting.

With reference to FIG. 1, in certain embodiments, a first
system 10 includes one or more resource 20 and an output 30.
The resources 20 can include any suitable input or source of
information. For example, the resources 20 can include one or
more services (wWhether stateless and/or stateful) or devices,
such as online applications, software applications, computing
elements, control stations, personal computers, personal elec-
tronic devices (such as personal digital assistants, smart
phones, etc.), and/or input devices, such as, for example,
keyboards, mouse devices, and/or physical sensors or other
hardware devices configured to sense and, in some instances,
to communicate one or more measurements and/or aspects of
a physical property or physical action. The output 30 can
include any suitable receiver of information or data output
device. For example, the output 30 can include a client, an
online application, software application, computing element,
control station, personal computer, personal electronic
device, display, and/or physical actuator. In some embodi-
ments, the first system 10 includes multiple outputs 30.

The first system 10 further includes a layer, system, or
control shell 40. In certain embodiments, the shell 40 allows
for the satisfaction of policies, objectives and/or quality of
service goals, each of which may be user-defined, of the
system 10. For example, in some embodiments, the shell 40 is
capable of automatically determining the availability of one
or more of the resources 20, selecting among the resources 20
to obtain the most reliable, cogent, or timely information for
delivery to the output 30, and delivering the information thus
obtained to the output 30 in a suitable format. In some
embodiments, principles of artificial intelligence and pro-
gramming languages are used to construct the shell 40, as
further described below.

35

40

45

In some embodiments, the shell 40 is distributed among
one or more nodes 50 that are arranged in a network 60. For
example, in the illustrated embodiment, the shell 40 is dis-
tributed among three nodes 50. Each node 50 can comprise a
storage device capable of storing information in a tangible
medium. In some embodiments, one or more nodes 50 com-
prise one or more resources 20 and/or one or more outputs 30.

As anon-limiting example, in the embodiment depicted in
FIG. 2, the first system 10 can comprise a sprinkling system.
The resources 20a-¢ of the sprinkling system can provide
various forms of information regarding the landscaped prop-
erty at which the sprinkling system is installed. For example,
first resource 20a can comprise a first clock, second resource
205 can comprise a second clock, third resource 20¢ can
comprise a moisture sensor in the soil of the property, fourth
resource 20d can comprise a thermometer measuring the air
temperature at the property, and fifth resource 20e can com-
prise an online weather forecast application. The output 30
can comprise an actuator configured to activate or deactivate
the sprinkling system. Each of the first resource 20a, second
resource 205, third resource 20c¢, fourth resource 20d, fifth
resource 20e, and the output 30 are in communication with
the shell 40.

The shell 40 can include rules for instructing the output 30
to activate or deactivate the sprinkling system based on infor-
mation received from one or more of: first resource 20a,
second resource 205, third resource 20c¢, fourth resource 204,
or fifth resource 20e. For example, the shell 40 can include a
rule set for determining whether to activate the sprinkling
system, such as the following:

1. Activate at 6:00 a.m. unless:

a. moisture content of soil is above a threshold value;
b. air temperature is below a threshold value; or
c. heavy precipitation is predicted for the day;

2. Activate if moisture content of soil is below a threshold

value;

3. Activate if air temperature has been above a threshold

value for 12 hours; or

4. Activate if sprinkling system has been off for 12 hours

and predicted peak temperature for the day is above
threshold value and no precipitation is predicted for the
day.

The shell 40 can gather information from first resource
20a, second resource 205, third resource 20c, fourth resource
20d, and fifth resource 20e; and, based on the rule set, provide
appropriate instructions to the output 30. Additionally, the
shell 40 can monitor the availability and/or operational status
of first resource 20a, second resource 205, third resource 20c¢,
fourth resource 20d, and fifth resource 20e and adapt the
decision-making process in response to any changes that may
occur to the system 10.

US 9,240,955 B1

17

For example, the shell 40 can be configured to apply only
the first rule of the rule set if one or more of the clocks (first
resource 20a and second resource 205) are available. If the
shell 40 senses that the clock (first resource 20q) is unavail-
able or inaccurate, such as may result from a brief power
outage or other resetting event, the shell 40 can instead use
second resource 205 (also a clock). Additionally, the shell 40
can be configured to disregard the first rule and apply one or
more of the second, third, and fourth rules if both first
resource 20a and second resource 205 are unavailable or
inaccurate.

In some embodiments, the shell 40 employs decentralized,
context-aware programming models (further described
below) that model workflows for processing of information
regarding the current configuration (e.g., the state, status, or
availability of one or more of the resources 20) of the first
system 10 and for discovering and composing services in
order to adapt to future configurations of the system 10. The
workflows can comprise business process models that consist
of partially ordered sequences of cooperating and coordi-
nated tasks executed to meet the objectives of the first system
10 and/or the output 30.

With reference to FIG. 3A, in certain embodiments, a sec-
ond system 100 such as the first system 10 comprises one or
more resources 20 and an output 30 in communication with a
shell 40. In other embodiments, the second system 100 can
include multiple outputs 30. Components of the shell 40 can
be distributed among one or more nodes of a network 60 (see
FIG. 1) in any suitable manner. The shell 40 can include one
or more gateways or control points 110 configured to com-
municate with the resources 20. Any suitable communication
interface can be employed between the resources 20 and the
control point 110, such as wired or wireless connections. The
control point 110 can include any suitable device or system,
and in some embodiments, comprises a computer.

In some embodiments, the control point 110 is in commu-
nication with a directory 120, and can be used to provide
information to the directory 120. For example, information
regarding the resources 20 can be provided to the directory
120 via the control point 110. The information for a particular
resource 20 can include instructions for accessing the
resource 20, a description of data available from the resource
20 (e.g., data that can be input to the shell 40 from the resource
20), instructions for providing data to the resource 20 (e.g.,
data that can be output from the shell 40 to the resource 20),
instructions for processing data received from the resource
20, temporal behaviors of the resource 20 (e.g., real-time
constraints, or actions performed over time, such as, for
example, sending a message, operating a hardware device,
etc.), and/or pre-call and post-call conditions of the resource
20. In some embodiments, the directory 120 thus can provide
for communication with one or more resources 20 that com-
prise stateless and/or stateful services. In some embodiments,
the directory 120 is an example of means for storing infor-
mation regarding resources that are available to the system
100.

In some arrangements, the information can be entered into
the directory 120 via the control point 110, such as via a
computer keyboard. The control point 110 can include a
graphical user interface, which in some arrangements
includes icons and/or forms for facilitating entry of the infor-
mation by a user. In some configurations, information regard-
ing the resources 20 can be entered in the directory 120
automatically as the resources 20 are placed in communica-
tion with the control point 110. Similarly, in some arrange-
ments, changes to the resources 20 can be automatically
registered in the directory 120.

10

15

20

25

30

35

40

45

50

55

60

65

18

For example, the control point 110 can include a universal
plug and play (UPnP) database comprising specifications or
other information regarding resources 20 capable of connec-
tion with the control point 110. In some embodiments, the
control point 110 automatically populates the directory 120
with the specification of and/or with other information
regarding a resource 20 as the resource 20 is connected with
the control point 110.

The UPnP database can be updated with changes to the
resources 20, such as changes to the specifications or other
information regarding the resources 20. For example, in some
arrangements, a manufacturer of or service provider for a
particular resource 20 can communicate with the control
point 110 to update UPnP database, such as with a firmware
upgrade for a device or sensor or a change in the input/output
parameters of an online application.

In some embodiments, specifications of the resources 20
are stored in the directory 120 in a scripting language (e.g., in
one or more scripts). The scripting language can be capable of
describing various information regarding the resources 20,
such as communication parameters, call/return parameters,
real-time and/or space constraints, and/or descriptions
regarding complex dynamic behavior of the resources 20, as
discussed above, and in further embodiments, can specify the
goals and constraints of the system 100, as discussed below.
The scripting language can express temporal evolution, spa-
tial relationships, communication parameters, departure from
and joining of domains protected by firewalls, and/or network
topologies. The scripting language can provide sufficient
expressiveness to describe models of complex physical
devices (e.g., physical sensors) and services (e.g., online
applications) in a heterogeneous network.

The control point 110 can include a compiler for convert-
ing information into the scripting language for delivery to the
directory 120. For example, the control point 110 can include
a UPnP database and, upon detection of a resource 20 for
which the specification is contained in the database, can
deliver the specification to the compiler for conversion to the
scripting language. The control point 110 can then pass the
scripting language version of the specification to the directory
120, which can store the specification. Similarly, updates
made to the UPnP database can be compiled into scripting
language and delivered to the directory 120 such that the
update is included in the directory 120. Such updating can be
automatic.

In some instances, a user may be versed in the scripting
language, and can enter information in the scripting language
into the directory 120 without using the compiler of the con-
trol point 110. In other instances, the user can use the graphi-
cal user interface to enter information in a format more famil-
iar to the user, which information is then converted to the
scripting language.

As discussed below, in some embodiments, the scripting
language delivered to the directory 120 forms one or more
statements. A set of such statements can constitute a scripting
language record 122, which may include one or more fields
capable of being updated. For example, the UPnP specifica-
tion of a resource 20 stored in the directory 120 can comprise
a scripting language record 122 of that resource 20, and in
some instances, the records 122 can be updated via the control
point 110 in a manner such as discussed above.

In some embodiments, the directory 120 stores records 122
that detail which resources 20 are interchangeable or provide
similar or substantially equivalent functionalities. For
example, the records 122 can include information indicating
that two or more resources 20 are logically equivalent. This
information can be used for fault tolerance purposes. For

US 9,240,955 B1

19

example, if one service 20 becomes inaccessible (e.g., fails or
is disconnected from the system 100), another service 20 may
be used instead.

In some embodiments, the directory 120 contains one or
more records 122 containing information regarding the topol-
ogy of the system 100. The record or records 122 can be
updated whenever the network topology changes. For
example, if a node of a network were to fail or be compro-
mised, the topology record or records 122 would be updated
to reflect this change.

In some embodiments, the directory 120 stores records 122
for connecting the second system 100 with additional
resources 20. For example, the records 122 can contain
instructions for the control point 110 to connect with a supple-
mental resource 20 if one or more of the resources 20 fail. By
way of illustration, the failed resources 20 can comprise, for
example, online applications that provide information on a
given topic without charge, and the supplemental resource 20
can comprise an online application that provides the same
information, but which charges for the connection time dur-
ing which the information is accessed. In such a scenario, the
second system 100 may have as a goal to operate as inexpen-
sively as possible such that the supplemental resource 20 is
made available (e.g., a connection therewith is established)
only when the free sources of information are unavailable.

The directory 120 can include an interface 124 through
which it can communicate with one or more other compo-
nents of the shell 40. For example, the directory 120 can
communicate updates made to the records 122 and/or can
receive instructions and/or updates via the interface 124, as
further discussed below. As another example, the shell 40 can
query the directory 120 through the interface 124. In some
embodiments, the directory 120 can be replicated or backed
up, such as for purposes of fault tolerance. Any suitable
technique may be used for replication or backup, including
those known in the art and those yet to be devised.

The shell 40 can include a model generator 130 configured
to communicate with the directory 120. The model generator
130 can access or communicate with one or more generator
records 132 or monitor records 134, which can be in the
scripting language. The generator records 132 or monitor
records 134 can be stored in any suitable manner. For
example, the generator records 132 or monitor records 134
can be stored in one or more network nodes. In many arrange-
ments, one or more of the generator records 132 or monitor
records 134 are user-defined, and thus can be created in accor-
dance with the goals the user may desire for the second
system 100 to achieve and/or limitations the user may desire
for the second system 100 to avoid. The generator records 132
or monitor records 134 can be entered via the control point
110.

The generator records 132 or monitor records 134 can
comprise constraints on the second system 100 and can
describe one or more objectives of the system 100. In various
embodiments, the generator records 132 or monitor records
134 comprise one or more of the following: context-aware-
ness policies, such as actions to be taken in the event that a
resource 20 obtains a specific reading; failure-handling poli-
cies, such as actions to be taken in the event that a resource 20
fails or is disconnected; safety or security policies or param-
eters, such as a description of which resources 20 may be
accessed for use with a particular output 30; distribution
policies, such as the manner in which the shell 40 can deploy
a computer-executable to a host (described below); timeliness
constraints, such as the total amount of time the second sys-
tem 100 is allowed to complete a task; goals; and/or general
constraints or requirements of the system 100.

10

15

20

25

30

35

40

45

50

55

60

65

20

In some embodiments, the generator records 132 are only
used by the model generator 130, and the monitor records 134
are used by both the model generator 130 and a system moni-
tor 200 (which is described below). For example, in certain
embodiments, the generator records 132 comprise failure-
handling policies and context-awareness policies, while the
monitor records 134 comprise timeliness constraints and gen-
eral application requirements. In other embodiments, the sec-
ond system 100 does not include generator records 132. For
example, the second system 100 can include only monitor
records 134.

In further embodiments, one or more monitor-only records
136 are accessible only by the monitor 200. The monitor-only
records 136 can be written in the scripting language and can
be entered via the control point 110. In some embodiments,
the monitor-only records 136 comprise user-defined security
policies of the system 100.

The model generator 130 can be configured to generate a
proofbased on information corresponding to the resources 20
(e.g., information contained in the generator records 122) and
based on the constraints of the second system 100 (e.g., based
onthe generator records 132 and/or monitor records 134). For
example, the model generator 130 can generate a model or
constructive proof to determine whether the resources 20 are
capable of satisfying the objective of the system 100. The
constructive proof can contain instructions for using one or
more of the resources 20 within one or more of the system
constraints (e.g., in a manner consistent with the generator
records 132 and/or monitor records 134).

In some embodiments, the model generator 130 comprises
a deduction engine that can interpret the scripting language as
theories, and can syntactically deduce the logical conse-
quences of a set of scripts. For example, the scripts in the
directory 120 and those in the generator records 132 or moni-
tor records 134 can be interpreted as logical expressions or
logical axioms. The deduction engine can synthesize a model
from the deductions. Synthesis of the models can proceed in
any suitable manner. For example, in some embodiments, a
so-called Curry-Howard-style correspondence may be used
in the synthesis by the model generator 130 to synthesize a
model from a constructive proof. Other techniques for con-
structing such models include, without limitation, machine
learning based on examples and combinatorial sketching.

As briefly mentioned, the scripts contained in the directory
120 can be viewed as a set of logical formulas or a set of
axioms of a logical theory of available resources 20. Logical
inferences based on such a theory can form a template for all
available functionalities that can result from combining the
capabilities of each available resource 20.

In some embodiments, to develop a model, the model gen-
erator 130 employs a forward-chaining natural deduction
based on the axioms in the records 122, generator records
132, and/or monitor records 134. For example, the model
generator 130 can query the directory 120 for available ser-
vices and/or devices among the resources 20. From scripts
returned as a result of the query, the model generator 130 can
deduce whether the response thus received satisfies the sys-
tem objective. If not, the model generator 130 can use the
response to consult the directory 120 again for another
resource 20 that will satisfy the system objective. As an end
result of such a forward-chaining deduction process, the
model generator 130 eventually develops a constructive proof
by which the system objective can be satisfied, such as, for
example, by triggering the output 30. The constructive proof
can indicate that one or more of the resources 20 are sufficient
to satisfy the system objective, and can include instructions
for using the one or more resources 20 within one or more

US 9,240,955 B1

21

system constraints to satisfy the system objective. In other
embodiments, the model generator 130 employs a backward-
chaining deduction, which starts with the system objective,
followed by one or more queries to the directory 120.

In some embodiments, the deduction is obtained from a
finitely branching, finite deduction tree. The deduction tree
can be built on an on-demand basis, thereby conserving space
used in the deduction. Throughout the deduction, policies that
are respected by the individual resources 20 and the con-
straints of the second system 100 can be used as constraints in
the deduction steps. In such embodiments, the deduction
process can be relatively inexpensive, in terms of computa-
tional resources.

The model generator 130 can also use information regard-
ing the topology of the system 100, as obtained from the
directory 120, to impose deployment constraints (e.g., con-
straints for deploying a computer-executable agent or com-
puter-executable instructions, as described below) in the con-
structive proof. In some arrangements, in the event that a
given record is inconsistent, whether intrinsically or with
respect to the available resources 20, the model generator 130
will terminate, and will report the inconsistency. In the event
that the available resources 20 are inadequate to implement
the objective of the system 100, the model generator 130 can
terminate and report the reason for the termination. Reporting
of an inconsistency or termination can comprise updating one
or more of the records 122, generator records 132, and moni-
tor records 134.

The model generator 130 can automatically synthesize
constructive proofs or models from the scripting language.
Accordingly, the scripting language can be realizable, such
that a model that satisfies the specification of a resource 20
can be constructed automatically from the scripting language
version of the resource 20.

The models generated by the model generator 130 can be
expressed as a modeling language. In some embodiments, the
modeling language includes formal operational semantics
and incorporates: communicating processes with external
and internal actions, hierarchical group structure, group com-
munication and logical and physical migration by processes.
External actions can involve, for example, communication,
logging into and out of groups, etc. Internal actions can
involve, for example, invoking APIs provided by the
resources 20. Additionally, the modeling language can com-
municate time constraints, space constraints, and/or failures,
and can include constructs for flow controls. In some arrange-
ments, the modeling language can be dynamically reconfig-
ured, as further discussed below. Such dynamic reconfigura-
tion can involve any suitable replacement method, such as, for
example, those used in object oriented paradigms. The mod-
eling language can provide for certification of the provenance
of data exchanged via the shell.

In some embodiments, models generated by the model
generator 130 can include various advantages. For example,
because some models correspond to a proof of the goals or
objectives of the second system 100 that is deduced both from
information particular to the resources 20 and from con-
straints of the system 100, the model can include intrinsic
certification that the system objectives are met, that the sys-
tem constraints are respected, and that none of the policies of
the resources 20 are violated. In some embodiments, the
model generator 130 is an example of means for generating a
constructive proof that a subset of the resources 20 that are
available to the second system 100 is sufficient to satisfy the
objective of the system 100.

In some embodiments, a model generated by the model
generator 130 is passed to an analyzer 140. The analyzer 140

30

40

45

65

22

can also accept as input one or more analyzer records 142 of
non-functional safety properties of the system 100. The safety
properties can include, for example, deadlock freedom, data
consistency, mutual exclusion, and freedom from race condi-
tions, etc. The analyzer records 142 can be user-defined, and
can be entered via the control point 110. In some embodi-
ments, the analyzer records 142 are stored in the scripting
language.

The analyzer 140 can determine whether the model
received from the model generator 130 is in compliance with
the safety properties of the system 100, as set forth in the
analyzer records 142. For example, in some embodiments,
the analyzer 140 includes a static analyzer (e.g., a type
checker), which verifies that the model is expressed in the
modeling language. A static analyzer can be a combination of
a model checker, a type checker, or can implement other
suitable program analysis techniques including, without limi-
tation, data flow analysis, run time analysis, and simulation,
to check conformance of the generated model with safety
properties, such as mutual exclusion, absence of race condi-
tions, data consistency, etc. The model/type checker takes as
input the model and the one or more analyzer records 142
(e.g., the scripting language version of the specifications of
the safety properties), and from these, automatically deter-
mines whether the model satisfies the specifications. The type
checker automatically evaluates safety properties, such as,
but not limited to, data consistency. In some embodiments,
the analyzer 140 is an example of means for determining that
a set of instructions violate a user-defined policy.

In certain embodiments, in the event that the analyzer 140
determines that the model does not satisfy the safety proper-
ties, the analyzer 140 sends a request to the model generator
130 for the model generator 130 to generate a new model in
compliance with the one or more analyzer records 142. For
example, the analyzer 140 can generate a counterexample in
the scripting language. The counterexample is delivered to
the model generator 130, which can produce a refined model
based on the counterexample. Accordingly, the analyzer 140
can ensure that a model created by the model generator 130
satisfies the safety specifications of the system 100.

In some embodiments, the model is passed from the ana-
lyzer 140 to a compiler 150. The compiler 150 can convert the
modeling language to a bytecode format in some embodi-
ments. The compiler 150 thus can create a bytecode version of
the model produced by the model generator 130 in such
embodiments. In some embodiments, the compiler 150 com-
piles the model into Java bytecode.

The compiler 150 can deliver the converted model to a
deployer 160, such as a distribution module. In some embodi-
ments, the converted model includes deployment information
that determines the manner in which the deployer 160 distrib-
utes the model. For example, in certain embodiments, one or
more generator records 132 or monitor records 134 that the
model generator 130 uses in creating a model can include
distribution policies for a computer-executable agent or com-
puter-executable set of instructions (e.g., the bytecode ver-
sion of the model). These distribution policies can be included
in the converted model, which is derived from the model
generated by the model generator 130. In other embodiments,
the deployer 160 directly accesses the one or more generator
records 132 or monitor records 134 that contain the distribu-
tion policies.

The deployer 160 can deliver the converted model to one or
more hosts 170 in compliance with the distribution policies.
For example, in some embodiments in which the second
system 100 comprises only two outputs 30, a firsthost 170 can
be in communication with the first output 30 and a second

US 9,240,955 B1

23

host 170 can be in communication with the second output 30.
If the second system 100 includes security constraints that
prohibit communication between resources 20 used in devel-
oping a bytecode model and the first output 30, the deployer
160 will distribute the bytecode model only to the second host
170 (e.g., for communication with the second output 30).

The deployer 160 can deliver a converted model to the one
or more hosts 170 in any suitable manner. For example, in
some embodiments, the deployer 160 communicates the con-
verted model via wireless connections. In other embodi-
ments, the connections are wired. Accordingly, in some
embodiments, the deployer 160 is an example of means for
communicating instructions to a host 170.

The one or more hosts 170 can be distributed among a
network, and in some embodiments, each host 170 corre-
sponds with a node of the network. Each host 170 can be in
communication with one or more outputs 30. In some
embodiments, an output 30 comprises the host 170. For
example, the output 30 can comprise physical actuator with
an inbuilt processor capable of operating as a host 170. A host
170 can comprise one or more of a machine 180, a driver 190,
and a monitor 200. In some embodiments, the host 170 com-
prises the machine 180 and the driver 190, but the monitor 200
is located elsewhere within the system 100. Other arrange-
ments are also possible.

The machine 180 can comprise an abstract machine or
other suitable module for automatically receiving and run-
ning the bytecode model. For example, in some embodi-
ments, the machine 180 comprises a Java virtual machine
configured to run a Java bytecode model. Abstract machines
in different hosts can be connected to each other through a
network environment. For some embodiments, the network
environment can be a group communication system (as a
nonlimiting example, the SPREAD toolkit provided by
Spread Concepts, LLC) or an environment such as the Paral-
lel Virtual Machine (PVM) software tool provided by Oak
Ridge National Laboratory. The machine 180 can have formal
semantics based on the semantics of the modeling language.
Prior to operation, the machines can be formally verified for
properties such as no message loss, no message reorder, etc.
For example, a no message loss property can ensure that
messages are not lost during transmission. Retransmission
techniques combined with acknowledgements can accom-
plish this property, in some embodiments. A property of no
message reorder can ensure that messages are received by a
receiver in the same order in which the sender sent them. This
property can be achieved, for example, through the use of
timestamps. The machine 180 can include APIs through
which processes running on the machine 180 can call ser-
vices. In some embodiments, a plurality of machines 180 can
communicate with each other over a network.

In some embodiments, the machine 180 interacts with an
output 30 via the driver 190. For example, in running the
converted model, the machine 180 can generate instructions,
signals, or other output that is sent to the driver 190, which
delivers the instructions, signals, or other output in a format
suitable for the output 30. In some embodiments, the output
30 can comprise a physical actuator that is activated when a
particular set of instructions is received via the driver 190. In
other embodiments, the output 30 can comprise an online
application that uses information received via the driver 190.

In certain embodiments, the host 170 runs a monitor 200 in
parallel with the machine 180. The monitor 200 can receive
input from the machine 180 and is configured to diagnose
malfunctions in the operation of the machine 180. The moni-
tor 200 can be in communication with the directory 120
and/or the model generator 130, and can issue one or more

25

40

45

24

recovery actions if such malfunctions occur. For example, ifa
malfunction is detected (e.g., a process fails to verify the
proof accompanying data it received), the monitor 200 can
abort or roll back a transaction, dynamically quarantine the
output 30 and/or the host 170 from the network, and/or
dynamically quarantine one or more processes of the machine
180 (such as when the machine 180 has been compromised).

In some embodiments, the monitor 200 communicates
with the directory 120 via the interface 124. The monitor 200
can be configured to detect changes made to the directory 120
(e.g., changes made to one or more of the records 122), and in
response, to dynamically modify the execution of the com-
puter-executable model by the machine 180.

For example, changes to the configuration of a resource 20
that are registered in the directory 120 can be reported to the
monitor 200. In the event of such a change, which may pre-
vent the host 170 from executing the converted model in such
amanner as to satisfy a system objective, the monitor 200 can
query the directory 120 for a resource 20 that is logically
equivalent to the previous configuration of the changed
resource 20. If such a replacement resource 20 exists, the
monitor 200 can dynamically reconfigure the processes run-
ning in the machine 180 to utilize the replacement resource.
The dynamic reconfiguration can employ runtime method
updates. In some embodiments, the monitor 200 sends a
request to the model generator 130 to utilize the replacement
resource 20 in place of the changed resource 20 and to gen-
erate and redeploy a new computer-executable model.
Accordingly, in some embodiments, the monitor 200 is an
example of means for detecting a change in a subset of
resources 20 available to the second system 100 that prevents
the host 170 from executing computer-executable instruc-
tions to satisfy the objective of the system 100.

In some embodiments, the monitor 200 is configured to
diagnose that a resource 20 and/or a network node has been
compromised (e.g., violates the specification or policies of
the resource 20 or the system 100). The diagnosis can be
based on the behavior of one or more processes in the
machine 180. In some embodiments, the diagnosis is abduc-
tive. For example, the behavior of the resource 20 can be
compared with the model generated by the model generator
130 or with the record 122 that corresponds to the resource 20.
The monitor 200 can update the record 122 of a resource 20 to
indicate that the resource 20 has been compromised. Addi-
tionally, the monitor 200 can send a request to the model
generator 130 to utilize a replacement resource 20 in place of
the compromised resource.

The monitor 200 can update a topology record 122 to
indicate that a network node has been compromised. In cer-
tain embodiments, as a result of an update to the topology
record 122 made during runtime of the system 100, the direc-
tory 120 provides an updated topology record 122 to the
monitor 200. In response, the monitor 200 can dynamically
redeploy one or more processes under the new topology and
can update the dynamic links for proper communication
between the processes. Thus, in some arrangements, the
monitor 200 can ensure that constraints (e.g., formal guaran-
tees) provided in the models generated by the model genera-
tor 130 continue to hold at runtime, even under changing
network environments.

As mentioned above, in some embodiments, executable
bytecode models are generated in such a way that communi-
cation of messages between executable bytecode models
either running on the same host or on different hosts is accom-
panied by (e.g., carries with it) a proof of generation of the
message. The proof describes how the message was gener-
ated. A bytecode model sends a message to another bytecode

US 9,240,955 B1

25

model, packaging the message with the proof of its genera-
tion. Before accepting a message, a receiving bytecode model
checks the proof that accompanies the message. The proof
checking is done by comparing the proof with the “model” of
the sending entity. In some embodiments, the activities gen-
erating the message as recorded in the proof correspond to the
capabilities as recorded in the model of the sending entity.
The failure of a proof raises a flag. This mechanism is used to
certify the provenance or pedigree of the data and helps in
preventing generation of spurious triggers for activating
resources 20. In further embodiments, the second system 100
can subsume models of multilevel security, such as, for
example, so-called Bell-La Padula models. In other words,
Bell-LaPaluda models are a specialized example of a security
models provided by embodiments of the invention, but more
rigorous security models may be used.

FIG. 3B illustrates another embodiment of the system 100.
As described above, in some embodiments, the second sys-
tem 100 comprises one or more resources 20 in communica-
tion with the shell 40. The control shell 40 can comprise a
deployer 160 that is configured to distribute converted models
to one or more hosts 170. In further embodiments, each of the
one or more hosts 170 can be in communication with one or
more outputs 30. Other arrangements of the second system
100 are also possible.

Non-limiting examples of some systems that can employ
methods and architectures such as described above are now
provided. These examples are provided by way of illustration,
and are in no way meant to limit the disclosure herein.

Example 1

FIG. 4 represents an embodiment of a third system 201,
such as first system 10 or second system 100. In the following,
some resources are designated as services. In the present
example, it is assumed that every resource has a unique
address in a network. The third system 201 comprises a coast

25

30

26

guard patrol fleet guarding a coastline. The third system 201
includes a surveying station 210 (also referred to as “SS”)
which has at its disposal a radar service that can be invoked
using an API, which is exported by a central radar agency 220
(“CRA”), for detecting intruder vessels within the surveyed
territory. The third system 201 further includes a command
station 230 (“Command”), a first destroyer 240 (“De-
stroyed”), and a second destroyer 250 (“Destroyer2”). If the
surveying station 210 detects an intruder vessel 260, it sends
a report to the command station 230 informing of the intru-
sion as well as the location of the intruder 260. On receiving
an intrusion report, the command station 230 sends informa-
tion regarding the location of the intruding vessel 260 to the
first destroyer 240 and also orders first destroyer 240 with the
task of destruction of the intruding vessel 260.

Each of the first and second destroyers 240, 250 has access
to an API provided by a missile resource that can be invoked
to fire upon intruder vessels. The missile service is exported
by a central ordnance service (“COS”) (not shown). On
receiving the order to destroy the intruder vessel 260 from the
command station 230, the first destroyer 240 invokes the API
provided by the missile service using the location information
for the intruder vessel 260. The outcome of the firing (suc-
cess/fail) is reported to the command station 230. If the first
destroyer 240 fails to hit the intruder vessel 260, the command
station 230 tasks the second destroyer 250 to destroy the
intruder vessel.

In certain embodiments, the modeling language can be
built on top of classical process calculus and provides a for-
mal programming model for resource coordination. The syn-
tax of one embodiment is provided below as recursive
Extended Backus-Naur Form (EBNF). In this embodiment,
the modeling language has operational semantics involving
interactions between observable actions, communication,
and silent computations. Additionally, the language can
model timeouts and failures (e.g., in monadic style).

(Model)
M:=
Ifp B (D)
{N} M
MM
N:=
X
n

(recursive model with an identifier)
(physical/logical host with name)
(two models spatially coexisting in a distributed network)

(XML namespace)
(name from an XML namespace)

(Bytecode Model)

Bi=
(localn) B (restriction)
dead (dead bytecode model)
B, comp B, (par. composition of bottom-level bytecode models)
Id (bytecode model identifier)
Ext;B (Observable action)
Sil;B (Silent behavior)
failure(Id) (failure module)
handle(Id);B (failure handle notation)
timeout t;B (timeout)
[ag (R yeresen8u(X,)] (API export)
Ext = (observable actions)
Sec (Security)
C (Comm.)
Cu= (Comm.)
Ch(x) (input)
Ch<Str> (output of string Str)
meg(Cy,...,C,,)<Str> (group multicast of string Str)
Ch:=N (Channel)
Sec =
login N (login to a logical/physical host)
logout N (exit a boundary)
Sil::= (silent behavior)
let x=S in Sil (let reduction)

if O then B else B’

(control flow)

US 9,240,955 B1

28

-continued
modify(Id://a;) (reconfiguration by substituting resource)
0 (constraint)
fail(Id) (failed computation)

Su=

Id://ay) (API exported by resource)
Id:/fa(y)=

pre;~post,[y] (pre and post conditions for invoking an APT)
0=

X >=y+C

X>y+C

X =<y+¢

X<y+¢

In this embodiment, a model can consist of several sub-
models, mutually recursive executable bytecode models (e.g.,
Ifp is the least fixpoint), or a named logical or physical host
that contains a running model inside. A recursive model can
perform observable actions, exhibit silent behavior, detect
and handle failures, and act as a resource exporting APIs that
can be invoked by itselfor other bytecode models. Observable
action involves communication, logging in and out of physi-
cal and logical hosts. Silent computation takes place by call-
ing APIs exported by resources. It can also involve failure
handling and dynamic reconfiguration through substitution
of one resource for another. APIs exported by resources are
described by their interfaces, which include pre- and post-
conditions that hold before and after invoking an API. The
pre- and post-conditions can be simple type judgments (the
types of the parameter passed) and arithmetic constraints. As
an example, the workflow for the first destroyer 240 can be
expressed as:

Ifp Destroyerl=

destroyerl (“destroy”, x);

let y=COS:/1missile(x) in

Command<y>; Destroyerl

In certain embodiments, the scripting language is based on
an intuitionistic mathematical logic. The language can
describe both temporal and spatial evolution and has atomic
constructs for describing relations among variables. The
basic syntax of one embodiment is provided below as EBNFs.

Pu=
defun prop (property definition)
OR(P1,P2) (disjunction)
&&(P1,P2) (conjunction in infix notation)
—(P1,P2) (intuitionistic implication)
~P (intuitionistic negation)
Finally P (temporal evolution)
I (variable for participant identifier)
Knows(ul Q) (epistemic operator signifying knowledge of object)
Invoke(ulviQ 11Q21) (invocation of APT)
Send(u,Q) (message send)
T (constant true)
Exists(l,P) (quantification over participant identifiers)
prop::=
ID Varlist
~ Var Constant
~n=> <=l =

In this embodiment, the scripting language includes par-
ticipant identifiers standing for states and constructs for
expressing communication, resource description, knowl-
edge, etc. Services are defined in terms of their properties
using the defun construct (akin to Lisp). A property can be a
predicate or a constraint (i.e., an identifier followed by a list of
variables). In the above, Q’s denote patterns. Patterns are
strings and can be regular expressions. They can characterize
both bytecode models and resources. For example, “Knows(u
1 Q)” above denotes that the bytecode model matching the

35

40

45

55

65

pattern Q knows the object u. A bytecode model can know an
object only if it has received a communication of it. “Invoke
(ulvlQ11Q2II)” describes the properties of a resource declara-
tively. This phrase describes an API exported by a resource to
which an object u is passed as parameter, returns object v,
satisfies the pattern Q1, can be invoked by a bytecode model
that matches the pattern Q2, and is exported by the entity
identified by I (that includes the location of the entity).

As an example, consider the first destroyer 240 described
above. If the first destroyer 240 bytecode model receives an
intrusion report x along with a “destroy” command (i.e.,
comes to know of an intrusion report along with a “destroy”
command) the destroyer 240 will use that report to fire a
missile in an attempt to destroy the intruder vessel 260 by
invoking some API exported by some resource. This can be
specified in the scripting language as follows:

Knows(x, “destroy”’|Destroyerl)—=Finally(Invoke
(xImissile_responsel*.input:
IntrusionReport.*|Destroyerl IW));

Here, W is a placeholder since the name of the service is not
yet known, nor is the entity exporting the service known.
Once these items are discovered, the proper pattern, as well as
the proper nominal, will be instantiated by a model generator
130 (not shown) of the present, illustrative example. The
phrase “*.input:IntrusionReport.*” is a regular pattern indi-
cating that the service accepts the type “IntrusionReport™ as
input where * describes wildcard. A substantial variety of
security policies and context-awareness requirements can be
specified in the scripting language. The foregoing example of
one embodiment of the scripting language is provided by way
of'illustration, and should in no way be interpreted as limiting
the disclosure as claimed.

The third system 201 can have coordination requirements
(e.g., system constraints) such as the following, which may be
stored in one or more records such as the records 122
described above:

Finally(Invoke(|“intrudervessel”, locationl*input: null,

output: IntrusionReport*|SSIU) && C0 && C1 && C2
&& . ..)

Co0: Invoke(l“intrudervessel”, location|*input:
null*|SSIU)—Finally(Send(*“intrudervessel”, location,
SS))

C1: Send(x, SS)—Finally(Knows(xl COMMAND))

C2: Knows(“intrudervessel”, location; COMMAND)—Fi-
nally(Send(“destroy”, location, COMMAND))

C3: Send(“destroy”, location, COMMAND)—Finally
(Knows(“destroy”, location|Destroyer1))

C4: Knows(“destroy”, location; Destroyer))—Finally(In-
voke(locationlmissile_responsel* input: intpair, output:
Boolean *|Destroyerl|W))

[«

These coordination requirements are referred to hereafter
as “Cspec”. In the foregoing, “IntrusionReport” represents a
concatenation of the strings “intrudervessel” and the location
of the intruder vessel 260. Additionally, “missile_response”

US 9,240,955 B1

29

is a Boolean with values “success” and “failure”. The speci-
fication Cspec states that the surveying station 210, or the SS
“entity”, will finally be able to obtain information about an
intrusion by invoking some API exported by some resource
and, if it obtains this information, will finally send it out as a
message (e.g., C0). If the SS bytecode model sends a mes-
sage, it should be finally received by the command station
(C1). If the command station 230 comes to know of (i.e.,
receives) an intrusion report, then the command station 230
will finally send out a command ordering destruction of the
intruding vessel (C2). If the command station 230 sends out a
destroy command, this command will finally be heard by the
first destroyer 240 (C3). If the first destroyer 240 receives a
command to destroy an intruding vessel, then it will finally
invoke some API exported by some resource to fire at the
intruder vessel and destroy it (C4), and so on.

In this embodiment, the temporal “Finally” modality in the
scripting language stands for branching time evolution. Addi-
tionally, the specifications are written in a possibilistic or
“permissive” mode. For example, in C1, because of the
branching time semantics of “Finally”, it is only a possibility
that the message will finally be received (i.e., there will exist
a run in which this occurs). It is also possible that in some run
the message will be lost in transit. The specification can be
fashioned to deal with such situations. Workflows will be
synthesized from such possibilistic specifications, thus
enabling the synthesis of fault tolerant workflows. From the
scripting language, the model generator 130 can synthesize
the SS bytecode model as a model (as described hereafter).

Consider the radar service exported by the central radar
agency 220. The service is specified by the following script:

Radar(, CRA, W)—=Invoke(|“intrudervessel”,

locationl *input: null, output:
IntrusionReport*| WICRA)

This script is referred to hereafter as S1. Here the service is
exported by the resource CRA, and provides an API Radar
whose invocation does not require any formal parameter to be
passed and returns the type IntrusionReport that consists of a
pair that consists of the string “intrudervessel” and a value of
type location. From Cspec, when the model generator 130 of
the present, illustrative example encounters

Invoke(]“intrudervessel”, location/*input: null, output:

IntrusionReport*ISSIU),
the model generator 130 starts a subtree for natural deduction.
The model generator 130 assumes in natural deduction style,
Radar(,CRA, SS). Using S1 and the implication elimination
rule, the model generator 130 deduces

Invoke(]“intrudervessel”, location/*input: null, output:

IntrusionReport *ISSICRA).
Using standard the implication-introduction rule in natural
deduction, the model generator 130 deduces

Radar(, CRA, SS)—Invoke(l“intrudervessel”,

locationl *input: null, output: IntrusionReport * [SS|
CRA)

Based on this deduction the model generator 130 con-
structs the model for the surveying station 210 as

Ifp SS=let y=CRA://Radar() in. ..

As shown, discovery of the “CRA://Radar()” service is auto-
mated by the model generator 130 by using deduction. If
multiple resources needed to be combined the natural deduc-
tion procedure would have correctly discovered the combi-
nation.

The basic deduction is conducted as a forward-chaining
procedure, and whenever a goal involving an “Invoke” con-
struct is encountered a companion proof tree is developed to
discover the proper service. This companion deduction can be
viewed as computing a logical interpolant. After the implica-

20

25

30

40

45

55

30

tion introduction, the assumption is discharged. The deduc-
tion, as well as the synthesis of bytecode models, can be
carried out entirely automatically and can be implemented in
software. From C0, the model generator 130 deduces “Send
(“intrudervessel”, location, SS)”. From this and C1, the
model generator 130 deduces “Knows(xICOMMAND)”.
From these two deductions, the model generator 130 refines
the model for SS as “lfp SS=let y=CRA://Radar() in
Command<y>; . . . ”. In addition the model generator 130
constructs the COMMAND bytecode model as

“Ifp COMMAND=Command(y); . . . ” Here, “Command”
is a new channel. In this manner the model generator 130
continues the deduction and simultaneously synthesizes
bytecode models until no additional new facts are produced.

The formal operational semantics of a machine 180 (not
shown) of the present, illustrative example can be imple-
mented in software. An example of the semantics are declara-
tively provided below. In the following it is assumed that [is
an environment and that [/I denotes the restriction of [to the
bytecode model identified by the identifier I. In some embodi-
ments, the environment can be implemented through a group
communication system or a messaging platform like PVM.

[/T'|-L://a=pre~post[x,] (Serv inv. 1)

[/T'|-L://a,(y)—pre—post[y/x,]

[/T')N |-pre[y/x,]—true (Serv inv. 2)

[/T' |-pre~post[y/x,]—post [y/x;,]

[T I-Complete(x) [/T' -val x=t;/T' I-post::=(a[x]

p[xD x]([/l' [-OIN I-(o[x] p[x]) [t/x]) (Serv. inv fail)

[U{fail()} I-post—false

The first rule (Serv. inv. 1) states that before a service
invocation, the preconditions of the service are evaluated. The
second rule (Serv inv. 2) states that service invocation pro-
ceeds if the pre-condition evaluates to true (true and false are
constants). The third rule (Serv. inv. fail) describes the man-
ner in which the failure of a service is registered by the
environment. [fthe “Complete” predicate of the environment
(which registers when a service invocation is completed) is
true, the resulting value does not satisfy the post condition. As
a result, it is registered that the resource exporting the API a,
has failed. This information will be used for failure handling
by other bytecode models. For example, as illustrated by the
rule below, the bytecode model failure (Id) is executed when-
ever any other bytecode model I' makes reference to handier

D:

[F fail(ld)(failure composition)
[/ F handle(/d); P - failure(ld)

Wireless sensor networks can be advantageously
employed in a wide variety of applications. Some wireless
devices (which can also be referred to as “motes™) that are
capable of collecting data from a sensor and relaying that data
wirelessly throughout a network via any suitable method can
allow for autonomous collection and processing of environ-
mental conditions over a given area. Certain of such motes
can communicate via radio frequency (“RF”) transmissions,
and may communicate with other motes in the network.

FIG. 5 represents an embodiment of a fourth system 300,
such as first system 10, second system 100, and third system
201, which can comprise a wireless sensor network. The
fourth system 300 can be configured for use in intelligent
monitoring and control of soil properties and irrigation. For
example, in some arrangements, a watering system for a
landscaped property comprises the fourth system 300.

US 9,240,955 B1

31

Embodiments of the fourth system 300 can be adapted for use
in other environments as well, as further described below.

In certain embodiments, the fourth system 300 includes
one or more sensors 310 that are physically distributed
throughout the landscaped property. The sensors 310 can be
buried underground or otherwise situated as desired. In some
embodiments, the sensors 310 are in communication with one
or more access points 320, each of which can comprise one or
more motes. Accordingly, the access points 320 may also be
referred to hereafter as motes. In some embodiments, the
access points 320 are in communication with one or more
control stations 330, each of which, in turn, can be in com-
munication with one or more master nodes 340 of a distrib-
uted network.

With reference to FIG. 6, in certain embodiments, one or
more of the sensors 310 are configured to transmit data using
magnetic induction (“MI”) transmissions. MI transmission
can be particularly advantageous in underground environ-
ments or other environments which can significantly attenu-
ate and/or substantially block RF transmissions. For example,
in comparison to RF transmission, MI transmission can be
relatively unaftected by the medium through which it propa-
gates (e.g., air, water, soil, rock, etc.).

In some embodiments, a sensor 310 comprises one or more
sensing elements 360, such as, for example, a soil moisture
probe. The sensing element 360 can be in communication
with a transmitter 362. The transmitter 362 can receive infor-
mation regarding a physical property of the soil, such as the
moisture content of the soil, from the sensing element 360,
and can transmit this information by MI transmission via a
ferromagnetic coil 364. For example, the transmitter 362 can
cause a signal of current to flow within the coil 364 in a
manner that represents the information to be transmitted,
which can generate a time-varying magnetic field.

With reference to FIG. 7, in some embodiments, one of
more of the sensors 310 comprises a receiving unit 370. For
example, in some arrangements, one or more sensors 310 are
configured to both send and receive MI signals, and can
communicate with each other.

The receiving unit 370 can comprise a coil 364. When a
signal in the form of a time-varying magnetic field is incident
on the coil, a corresponding voltage can be induced. The
receiving unit 370 can further comprise a receiver 372 for
detecting the signal. For example, the receiving unit 370 can
detect varied flow of current through the coil that may result
from the induced voltage.

In some embodiments the receiving unit 370 includes a
data management unit 374 in communication with the
receiver 372. The data management unit 374 can be config-
ured to store, convert, manipulate, or otherwise use informa-
tion received from the receiver 372. For example, the data
management unit 374 can include an LCD panel for display-
ing information regarding the transmitted information, an RF
transmitter for relaying the information, a data logger for
storing the information and/or some other suitable device. In
some embodiments, the data management unit 374 can be in
communication with the transmitter 362 (see FIG. 6) of a
sensor 310, and can instruct the transmitter to send informa-
tion to an access point 320, as further described below.

With reference again to FIG. 5, in certain embodiments,
one or more sensors 310 each may communicate directly with
an access point 320 via MI transmission, as illustrated by the
leftmost grouping of sensors 310 and the leftmost access
point 320. In other embodiments, one or more sensors 310
may be distanced sufficiently far from the access point 320 to
substantially prevent effective direct communication
between some of the sensors 310 due to a relatively small

10

15

20

25

30

35

40

45

50

55

60

65

32

transmission range of the transmitters 362. In certain of such
embodiments, a first sensor 310 may transmit data to a nearby
second sensor 310, which in turn may transmit the received
data (along with additional data that it has gathered, in some
instances) to yet a third sensor 310 which is out of the range
of'the first sensor 310. The third sensor 310 may then transmit
data received from the other sensors 310 and/or data it has
gathered to an access point 320. An example of such a relay of
sensors 310 is illustrated in the middle grouping of sensors
310 in FIG. 5, which are shown as communicating with the
middle access point 320 via a single sensor 310. In various
embodiments, the fourth system 300 can include hundreds,
thousands, or even millions of sensors 310.

In some embodiments, the sensors 310 form a wireless
network that employs only MI transmission. However, in
other embodiments, the wireless network can use other suit-
able communication mechanisms instead of or in addition to
MI transmission.

With reference to FIG. 8, in certain embodiments, an
access point 320 can comprise a receiver 370 such as
described above, and thus can receive signals transmitted by
one or more sensors 310. The receiver 370 can further include
a smart card 380 or any other suitable computing element in
communication with the receiver 370.

The smart card 380 can further be in communication with
(e.g., can transmit information to and/or receive information
from) a secondary communication device, such as a trans-
ceiver 390, that is configured to permit communication
between the access point 320 and one or more additional
elements of the fourth system 300. For example, in some
embodiments, the access point 320 is configured to commu-
nicate with one or more other access points 320, one or more
control stations 330, and/or one or more master nodes 340 via
the transceiver 390 (see FIG. 5). In some embodiments, infra-
red transceivers, cables, wires, or other suitable communica-
tion media are used instead of or in addition to the transceiver
390.

With reference again to FIG. 5, in some embodiments, one
or more of the access points 320 are positioned at or above
ground level and are capable of communicating with one or
more sensors 310 that are positioned underground. For
example, each access point 320 may be in communication
with a specific subset of sensors 310. The access points 320
can receive information from the sensors 310 and can com-
municate that information and/or additional information to
one or more access points 320, control stations 330, and/or
master nodes 340. In some embodiments, one or more access
points 320 may be arranged in a relay such that a subset of
access points 320 communicates with each other and a single
access point 320 of the subset communicates with a control
station 330 and/or a master node 340.

The control stations 330 can assimilate and manage infor-
mation received from the access points 320, which may be
used in decision making, data logging, or other desired tasks.
The master nodes 340 can receive data from the control sta-
tions 330 and can make decisions on or otherwise utilize the
data thus received.

Any other suitable arrangement is also possible. For
example, in some embodiments, the access points 320 can
communicate directly with the master nodes, thereby elimi-
nating the control stations 330. In other embodiments, the
network can comprise only sensors 310 and access points
320. For example, the access points 320 can include network-
ing software and can serve as network nodes. In still other
embodiments, layers in addition to those shown in FIG. 5 can
be used. For example, devices may be inserted to communi-
cate between the access points 320 and the control stations

US 9,240,955 B1

33

330. Any suitable combination of the master nodes 340, con-
trol stations 330, access points 320, and/or sensors 310 can be
positioned above or below ground or water, or may be sus-
pended in air in any suitable manner (e.g., may be positioned
on a pole, in an aircraft, etc.).

As illustrated by the arrows 350, the system 30 can include
a much larger number of nodes 340, control stations 330,
access points 320, and/or sensors 310 than those shown. A
hybrid of communication techniques may also be used to
connect any element in the network. For example, some sen-
sors 310 may communicate via M1 transmission, while others
may use cable, RF, infrared, or other technologies. Similarly,
the nodes 340, control stations 330, and/or access points 320
can use any suitable combination of such technologies to
communicate.

The fourth system 300 can include one or more shells 40
(not shown in FIG. 5) such as described above in any suitable
number and/or distribution. For example, in some embodi-
ments, one or more nodes 340 and/or control stations 330
include one or more directories 120, model generators 130,
analyzers 140, compilers 150, and/or deployers 160. In some
embodiments, each access point 320 comprises a host 170.
For example, the smart card 380 of a sensor 320 (see FIG. 8)
can serve as a host 170 on which a converted model can be
executed. Other elements of the fourth system 300 can also
serve as hosts 170, including the nodes 340 and/or the control
stations 330.

The sensors 310 can comprise resources 20 that are avail-
able to the fourth system 300. In some embodiments, the
fourth system 300 utilizes information gathered from the
sensors 310 to determine whether to actuate sprinklers via an
output device 30 (not shown in FIG. 5), such as, for example,
any suitable actuator such as one or more valves comprising
solenoids.

In certain embodiments, the smart card 380 (see FIG. 8),
which can be running a set of computer-executable instruc-
tions issued by a deployer 160, can receive information
regarding the operational status of a sensor 310 and/or data
regarding the moisture content of the soil from the sensor 310
via the receiver 370. This information and data can be deliv-
ered via the transceiver 390 to the appropriate location or
locations (e.g., to one or more nodes 340 and/or control
stations 330) within the distributed network of the fourth
system 300 to update a directory 120, which can comprise a
record 122 for the sensor 310. If the information received
from the sensor 310 is sufficient to provide a trigger, in some
embodiments a node 340 may actuate an output device 30 to
turn on the sprinkling system.

In some embodiments, the smart card 380 comprises a Java
Smart Card that comprises a Java virtual machine. Java Smart
Cards can permit small Java-based applications to run
securely on them by incorporating Java kilobyte virtual
machines. A smart card can contain an embedded device (i.e.,
a microcontroller) that provides a user with the ability to
program the card and assign specific tasks to occur as a result
of given events. The computer-executable instructions thus
can be issued in the form of Java bytecode that can run
securely on top of the Java virtual machine.

In some embodiments, the smart card 380 is placed in
communication with the receiver 370 via a serial I/O. The
smart card can comprise a controller that includes electrical
contacts that are connected to an output port of the receiver
370. A Java applet or application downloaded to the micro-
controller can process incoming signals and can act accord-
ingly by initiating commands to send data regarding the
received signal to the transceiver 390. The data can be

10

15

20

25

30

35

40

45

50

55

60

65

34

securely protected through an applet firewall that restricts and
checks access of data elements from one applet to another.

By employing a control shell 40 such as described above,
the fourth system 300 can include a scalable intelligent soft-
ware-based coordination infrastructure. Distributed intelli-
gent agents (e.g., instructions distributed by a model genera-
tor 130 and converted by a compiler 150) can use data from
the sensors 310 and user-defined system management poli-
cies to generate real-time control of the fourth system 300. In
some embodiments, the control decisions are delivered to
appropriate personnel for manual intervention. For example,
the decision can be delivered to a control point 110 compris-
ing a graphical user interface via which a user can provide
commands to the fourth system 300. In other embodiments,
the decisions are made without manual intervention, and are
delivered directly to an output device 30. The shell 40 can
provide for intelligent monitoring and control of soil proper-
ties. As discussed, the shell 40 can include a software tool that
provides policy-based, on-demand coordination of the fourth
system 300, which can be an irrigation system. Other aspects
and advantages of embodiments of the fourth system 300 will
also be apparent to those of skill in the art from the disclosure
herein.

In certain embodiments, access points 320 comprising Java
Smart Cards, which can interpret data through bytecodes, can
consume less power than known motes. Such access points
320 can also be relatively smaller and much cheaper than
known mote devices, in some instances. For example, the cost
of manufacturing some arrangements can be only slightly
over 10% the cost of manufacturing known mote devices.
Furthermore, unlike certain embodiments disclosed above,
known motes are not configured to communicate with MI
transmission devices, nor are they configured to communi-
cate with a large number (e.g., thousands or millions) of
sensors that are intelligently interconnected via dynamically
changeable software, such as that provided by control shells
40.

Embodiments of the fourth system 300 can be employed in
avariety of contexts. For example, in some embodiments, the
fourth system 300 can comprise an underground network of
soil moisture sensors which may be fully buried (e.g., no
cables or protrusions extending to the surface). Such a net-
work could be used in agriculture to control irrigation. In
some embodiments, the fourth system 300 can comprise an
underground network of pressure, vibration, movement,
audio, and/or other sensors that could be a valuable defensive
and monitoring system for military use. In other embodi-
ments, the system can comprise an underwater network of
sensors for monitoring water properties, such as temperature,
quality, or quantity, plant or animal life and conditions, or a
variety of other underwater applications. In some embodi-
ments, the fourth system 300 can comprise a network of
implanted biomedical sensors configured to coordinate the
acquisition of certain vital signs or biological conditions of a
patient. Such a network configuration can allow one sensor
which detects a certain problem, such as a high fever or a heart
condition, for example, to request other sensors to acquire
relevant data immediately to assist in problem solving deci-
sion making. In other embodiments, the system can comprise
a network through any medium in which short range commu-
nication is desirable. For example, a personal digital assistant,
watch, cell phone, laptop, and personal computer can all
synchronize to each other if within transmission range.

Various embodiments of first system 10, second system
100, third system 201, and fourth system 300 and/or golf
course watering system 1200 include one or more advanta-
geous features, such as the following. Certain embodiments

US 9,240,955 B1

35

provide for the reliable satisfaction ofthe goals (e.g., business
goals) of a user, ensure that the quality of service constraints
of'the user are respected, and ensure that none of the policies
imposed by individual services and devices of a system, nor
those imposed by the system, are violated, even under rapidly
changing environments, and some systems ensure that non-
functional safety constraints of the system are satisfied. Cer-
tain of such embodiments can be particularly suited for
deployment in mission-critical applications, such as patient
monitoring or building security.

Some embodiments incorporate expressive yet tractable
languages to describe models of complex heterogeneous
physical devices, such as actuators or sensors. Some embodi-
ments permit automatic synthesis of workflows from declara-
tive specifications of the business logic and quality of service
goals of a system and from models of available devices and
services. Further embodiments provide models that are cre-
ated and implemented in a manner that provides security
features and that meets the quality of service goals of a sys-
tem. Certain embodiments provide a mechanism for certify-
ing the provenance of data exchanged between processes and
prevent generation of spurious triggers for activating services
and/or devices of a networked system.

Some embodiments provide for automatic and controlled
deployment and running of bytecode models or computer-
executable instructions obtained from constructive proofs.
The bytecode models can be generated automatically from
user-defined system constraints such that the system func-
tions substantially autonomously and without any or without
extensive software development by the user. Some embodi-
ments provide for readily deployable systems that can be
easily adapted to meet the system goals of a user. Further
embodiments permit reconfiguration of a workflow at runt-
ime, which reconfiguration can include substituting new ser-
vices and/or devices for existing ones and/or can provide new
functionalities in response to changing requirements of or
changing resource availabilities to a system, even when such
conditions change rapidly.

Some systems can be easily reconfigured, such as when a
user wishes for the system to conform to new or different
policies. In some embodiments, the user can readily enter
these policy changes via a control point 110. Some systems
can also berapidly deployable, such that the system can begin
operation soon after policies, goals, and system objectives are
created.

Various embodiments may be advantageously employed in
numerous contexts, such as those for which intelligent and/or
reliable service coordination is important. For example,
embodiments may be used for: generating mashup engines
for intelligent location tracking and mapping; soil and water
management and irrigation control for agricultural and envi-
ronmental applications; intelligent distributed power control,
such as control of a power grid; home entertainment and
security; distributed intelligent control of Internet-based
appliances; distributed robot control; intelligent control of
manufacturing plants and inventory management; reliable
and smart emergency management applications; on-line,
flexible assembly of operationally responsive spacecrafts;
intelligent and reliable control of guided missiles; tracking
and monitoring for homeland security; cognitive antennas,
including multiple input/multiple output (MIMO) systems
that use numerous antennas to optimize communication; cog-
nitive radars; cognitive radios; automatic hospital manage-
ment and/or monitoring of the delivery of therapeutic drugs;
and automated distributed fermentation control, as well as
modulation of cellular metabolism. Other applications are
also contemplated.

10

15

20

25

30

35

40

45

50

55

60

65

36

With reference to FIG. 9, in certain embodiments, a host
170 further comprises a machine 180 and a data store 400,
said data store 400 providing GAS access. FIG. 9 depicts
three hosts 170 as 170a, 1705, and 170¢ (each host 170 having
a communication system 440 and a logic process 440, show-
ing that each data store 400 and each communication system
440 is capable of multi-instance distributed operation). The
data store 400 may be a distributed key-value store or other
DHT and may also be referred to as a distributed database.
Data store 400 contains one or more data records 430. The
directory 120 may be part of the data store 300, but the
directory 120 may also be separate. In addition, the records
122 stored in the directory 120 may be data records 430.
Generator records 132, monitor records 134, monitor-only
records 136, and analyzer records 142 may be data records
430. The host 170 contains an operating system such as
Ubuntu brand GNU/Linux. Machine 180 may be an abstract
machine such as a Java virtual machine (JVM) or Machine
180 may be resources provided by the operating system on
host 170. Machine 180 monitors and controls the execution
and thread-level synchronization of control process 410,
logic process 420, and evaluating process 621. Control pro-
cess 410 contains control loop 500 (FIG. 10). Logic process
420 contains logic loop 600 (FIG. 11). Data store 400 con-
tains network model 950, testing module 960, and learning
module 970 (FIG. 14A) as well as learning process 900 (FI1G.
14). Control process 410, logic process 420, and evaluating
process 621 may be implemented as Java threads or via
another multiprocess or concurrent execution system as may
be provided by machine 180. Logic process 420 may be a
converted model as prepared by model generator 130, ana-
lyzer 140, and compiler 150. Control process 410, logic pro-
cess 420, and evaluating process 621 communicate with com-
munication system 440 (as such, it is understood that
communication system 440 is capable of multi-instance dis-
tributed operation). Communication system 440 communi-
cates with (interfaces with) data store 400. Control process
410 and logic process 420 communicate with (interface with)
data store 400. Control process 410 and logic process 420
may communicate with (interface with) the data store 400 on
the host wherein control process 410 and logic process 420
reside, or they may communicate with (interface with) the
data store 400 on another process. FIG. 9 depicts communi-
cation of logic process 420 on host 1705 with the data store
400 on host 170a. Logic process 420 may direct a driver 190
to control an output 30. Logic process 420 may also be a
control point 110, may receive information from an input 20,
and may communicate information to (interface with) com-
munication system 440 or data store 400. In certain embodi-
ments, deployer 160 may send information to host 170, and in
particular to a data store 400 on host 170. Control process 410
retrieves information from data store 400 sent by deployer
160. Although FIG. 9 only shows one control process 410 on
each machine 180, it is understood that each machine 180
may contain any number of control processes 410. Host 170¢
depicts a host 170 and a machine 180 containing two logic
processes 420. However, each machine 180 may contain any
number of control processes 410 and any number of logic
processes 420. In addition, a logic process 420 may commu-
nicate with more many outputs 30 (via one or more drivers
190) and with many inputs 20 (via one or more control points
110). As illustrated, components contained within a host 170
communicate with components contained within another
host 170 via network 60.

FIG. 10 is a flow chart depicting control loop 500 showing
how control process 410 receives and acts on control mes-
sages from deployer 160 via data store 400. Control loop 500

US 9,240,955 B1

37

is a repeating loop that does not stop during normal operation
of machine 180. In retrieving step 510, control process 410
retrieves any data records 430 contained in data store 400
which are control messages. In certain embodiments, control
messages are sent to control process 410 by deployer 160. In
deploying step 520, control process 410 examines the infor-
mation retrieved in retrieving step 510. If said retrieved infor-
mation instructs control process 410 to deploy a logic process
420, then control process causes machine 180 to begin execu-
tion of a logic process 420. In certain embodiments, execut-
able Java bytecode as compiled into Java class files and com-
pressed into a Java Archive (JAR) file is included in the
information retrieved in retrieving step 510, and control pro-
cess 410 causes machine 180 to load and execute instructions
contained in said bytecode. However, it is understood that
non-Java bytecode may be used. It is also understood that
interpreted languages such as, but not limited to, Python may
be used. In deactivation-instructing step 530, control process
410 examines the information retrieved in retrieving step 510.
If said retrieved information instructs control process 410 to
deactivate a logic process 420, then control process 410
instructs logic process 420 to deactivate. In certain embodi-
ments, control process 410 may instruct logic process 420 to
deactivate by communicating directly with control process
420. In other embodiments, control process 410 may instruct
logic process 420 to deactivate by storing a message in data
store 400, which is retrieved by logic process 420. In unload-
ing step 540, control process 410 determines whether any
logic processes 420 have completed deactivation. In the event
that any logic processes 420 have completed deactivation,
then control process 410 causes machine 180 to remove logic
process 420 from machine 180. It is understood that the
loading and removal of logic process 420 from machine 180
may be achieved by using the Reflection capabilities of the
Java programming language and virtual machine technolo-
gies. However, it is understood that other technology may be
used. In control-sleeping step 550, control process 410 stops
execution for a predetermined amount of time, such as, for
example, 100 milliseconds. During this period of time,
machine 180 does not execute control process 410. When the
predetermined amount of time has expired, machine 180
resumes execution of control process 410 and continues con-
trol loop 500 by proceeding to retrieving step 510. It is under-
stood that control-sleeping step 550 is accomplished by using
the Sleep function provided by the Java programming lan-
guage. However, it is understood that control-sleeping step
550 specifically, and more generally, control process 410 and
logic process 420, may be implemented using any suitable
multiprocess, multithreading, or concurrent program execu-
tion technology. Accordingly, control process 420 and logic
process 410 may be implemented as natively compiled pro-
grams which execute concurrently in a suitable operating
system environment. In addition, in certain embodiments,
control-sleeping step 550 may be omitted. In yet other
embodiments, control-sleeping step 550 may be selectively
omitted.

FIG. 11 is a flow chart depicting logic loop 600 showing
how logic process 420 retrieves, evaluates, and acts on infor-
mation from data store 400. Logic loop 600 is a repeating loop
that does not stop unless control process 410 dictates logic
process 420 to deactivate. Logic loop 600 is comprised of
message-retrieving step 601, deactivating step 605, reading
step 610, delegating step 620, acting step 650, terminating
step 660, and sleeping step 680. Delegating step 620 causes
machine 180 to begin execution of a non-repeating evaluating
process 621. Evaluating process 621 comprises evaluating
step 630 and storing step 640.

10

15

20

25

30

35

40

45

50

55

60

65

38

In message-retrieving step 601, logic process 420 accesses
information transmitted by control process 410. Said infor-
mation may be stored in logic process 420 or it may be stored
in data store 400. It is understood that any number of inter-
process communication techniques may be used to accom-
plish transmittal of information from control process 410 to
logic process 420 or from logic process 420 to control process
410. After completing message-retrieving step 601, logic pro-
cess 420 proceeds to deactivating step 605.

In deactivating step 605, logic process 420 analyzes infor-
mation accessed in message-retrieving step 601. If said infor-
mation indicates that control process 410 has instructed logic
process 420 to terminate, logic process 420 records that it has
received a termination instruction and proceeds to acting step
650. If said information does not indicate that control process
410 has instructed logic process 420 to terminate, logic pro-
cess 420 proceeds to reading step 610.

In reading step 610, logic process 420 attempts to retrieve
one or more data records 430 from data store 400. If a
requested record is available, logic process 420 proceeds to
delegating step 620. If a requested record is not available,
logic process 420 proceeds to sleeping step 680.

In sleeping step 680, logic process 420 stops execution for
a predetermined amount of time, such as, for example, 100
milliseconds. During this period of time, machine 180 does
not execute logic process 420. When the predetermined
amount of time has expired, machine 180 resumes execution
oflogic process 420 and continues logic loop 600 by proceed-
ing to message-retrieving step 601. Itis understood that sleep-
ing step 680 is accomplished by using the Sleep function
provided by the Java programming language; however, as
described elsewhere herein, any suitable concurrent program-
ming technique may be used to accomplish this step. In addi-
tion, in certain embodiments, sleeping step 680 may be omit-
ted.

In delegating step 620, logic process 420 causes machine
180 to begin execution of evaluating process 621. Logic pro-
cess 420 also records information associated with evaluating
process 621 for use in acting step 650. In certain embodi-
ments, delegating step 620 provides information available
from logic process 420 or from data store 400 to evaluating
process 621. After performing delegating step 620, logic pro-
cess 420 proceeds to acting step 650.

Evaluating process 621 operates concurrently with logic
process 420 and control process 410, and in certain embodi-
ments, delegating step 620 causes a new Java thread to begin
execution in machine 180. However, it is understood that
evaluating process 621 may operate using any technology
that may be used by logic process 420 or control process 410.
As may be appreciated, evaluating process 621 may not be
complete when logic loop 600 returns to delegating step 620
and thereby delegates another evaluating process. In such a
situation, multiple evaluating processes 621 may be execut-
ing concurrently, thereby taking advantage of resources pro-
vided by host 170 which allow for concurrent execution of
instructions. It is understood that host 170 may include mul-
tiple microprocessors or microprocessors containing mul-
tiple physical or logical cores. The one or more concurrently
executing evaluating processes 621 may utilize the resources
which may be provided by host 170 for concurrent execution
of instructions.

It is understood that information available to evaluating
process 621 and logic process 420 from data store 400 may
have been acquired from one or more inputs 20 or may have
been synthesized by one or more evaluating processes 621
delegated by one or more logic processes 420 on one or more
hosts 170.

US 9,240,955 B1

39

In evaluating step 630, evaluating process 621 analyzes
information from data store 400 according to instructions
created and provided by model generator 130, analyzer 140,
and compiler 150. The instructions may be in the form of
bytecode or other machine executable object code. In certain
embodiments, evaluating step 630 executes a purely func-
tional method. It is understood in the art that a purely func-
tional method causes no change in program state, and merely
returns a value based on evaluating a series of logical instruc-
tions and mathematical calculations.

In storing step 640, evaluating process 621 may commu-
nicate information synthesized in evaluating step 630 to logic
process 420. After completion of storing step 640, evaluating
process 621 terminates.

In acting step 650, logic process 420 controls one or more
outputs 30 via driver 190. Also, logic process 420 stores
information in data store 400 that has been synthesized by
evaluating process 421 subsequent to any previous executions
of acting step 650 by logic process 420.

After completion of acting step 650, logic process 420
determines whether to proceed to message-retrieving step
601 or to terminating step 660. If logic process 420 has
recorded that it has received a termination instruction, then
logic process 420 proceeds to terminating step 660. Other-
wise, logic process 420 proceeds to message-retrieving step
601.

In terminating step 660, logic process 420 communicates
with control process 410 the fact that logic process 420 has
completed termination. Logic process 420 then ceases execu-
tion.

As may be observed, logic process 420 does not perform
sleeping step 680 after acting step 650. Sleeping step 680 may
be skipped. We think that it is better to perform sleeping step
680 when temporarily ceasing execution achieves an effi-
ciency, such as where no information is available to logic
process 420 in reading step 610. However, it is understood
that certain embodiments of the invention may reorder steps
in logic loop 600.

In the embodiment described in FIG. 11, evaluating step
630 and storing step 640 are performed in parallel to logic
loop 600. However, it is understood that evaluating step 630
and storing step 640 may be performed as steps in logic loop
600.

In certain embodiments, some of the steps in logic loop 600
steps may be performed in parallel, or not as part of, logic
loop 600. For example, reading step 610, delegating step 620,
and acting step 650 may be performed as a non-repeating
process in addition to or as an alternative to being performed
as part of logic loop 600. It is understood that in certain
embodiments, reading step 610, delegating step 620, and
acting step 650 may be implemented such that they can be
executed by machine 180 either in a thread containing other
steps in logic loop 600 or in a thread containing only reading
step 610, delegating step 620, and acting step 650.

As may be observed, where logic process 420 implements
logic loop 600 and includes sleeping step 680, the amount of
time that logic process 420 spends in sleeping step 680 influ-
ences resource utilization of host 170 and also influences the
reaction time of logic process 420. For example, during sleep-
ing step 680, resources of host 170 are not used by logic
process 420, and machine 180 may execute instructions from
other processes on host 170, such as control process 410 or
evaluating process 621. This allows, for example, machine
180 to complete evaluating process 621 more quickly and
leads to more efficient utilization of resources. On the other
hand, when the time spent in sleeping step 680 is long, logic
process 420 may execute reading step 610 a significant

5

10

15

20

25

30

35

40

45

50

55

60

65

40

amount of time after data store 400 on any host 170 receives
updated information. For example, if logic process 420
spends 100 milliseconds in sleeping step 680 and data store
400 receives updated information twenty milliseconds after
logic process 420 enters sleeping step 680, then logic process
420 will not receive the updated information until at least
eighty milliseconds after it is received by data store 400.

Certain embodiments achieve greater efficiency and
increased reaction time by configuring data store 400 to com-
municate with, or trigger, logic process 420 on or by the
existence of newly arrived information. In such an embodi-
ment, when data store 400 receives updated information that
logic process 420 should receive, data store 400 attempts to
communicate with logic process 420 to indicate that logic
process 420 should retrieve information from data store 400.
In addition, in these embodiments, reading step 610, delegat-
ing step 620, and acting step 650 are executed by machine 180
in a separate process that is not part of logic loop 600.

In certain embodiments, the attempt by data store 400 to
communicate with logic process 420 may fail (as a nonlim-
iting example, because resource use of host 170 is too high),
and logic process 420 will eventually retrieve the newly
updated information from data store 400 via reading step 610
in logic loop 600.

As shown in FIG. 9, data store 400 on one host 170 may
communicate with logic process 420 on another host 170. In
certain embodiments, such triggering may be from a data
store 400 on one host 170 to a logic process 420 on another
host 170, either in addition to, or instead of, triggering from a
data store 400 on the same host as the triggered logic process
420.

FIG. 12 further illustrates an embodiment of data store 400
with respect to records stored in data store 400 and the com-
munication between two data stores 400 on two hosts 170
(and further demonstrates how data store 400 is capable of
multi-instance distributed operation). Data stores 400a and
4005 also contain network model 950, testing module 960,
and learning module 970 (FIG. 14A) as well as learning
process 900 (FIG. 14). Data store 400a and data store 4005
communicate via network 60. Each data store 400 may con-
tain any number of data records 430. Each data record 430
contains a key 720 and a value 730. First record 711 contains
first key 721 and first value 731. Second record 712 contains
second key 722 and second value 732. Third record 713
contains third key 723 and third value 733. Fourth record 714
contains fourth key 724 and fourth value 734. Each value 730
may implement any type of suitable data structure, such as
without limitation, primitive types (including, without limi-
tation, boolean, character, float, double, and integer values);
composite types (including, without limitation, tuples,
structs, and composites thereof); and abstract types (includ-
ing, without limitation, containers, queues, maps, associative
arrays, dictionaries, multimaps, sets, multisets, priority
queues, double-ended queues, stacks, strings, trees, graphs,
hashsets, and hashtables). It is understood that, in addition to
the data structures described, any type of data structure that
can be converted into one of these data structures may also be
used. This includes any type of data structure or value that can
be serialized (for example, into a string). A process may
request the value 730 for one or more keys 720, and data store
400 retrieves the value in the same data record 430 as the
requested key 720. It is understood that any number of tech-
nologies may be used to accomplish key-value retrieval. A
nonlimiting list of exemplar technologies includes Project
Voldemort, Ringo, Kai, Dynomite, Dynamo, MemcacheDB,
ThruDB, CouchDB, Cassandra, HBase, Hazelcase, nmdb,
Chord, Bigtable, Keyspace, and Hypertable.

US 9,240,955 B1

41

The data stores 400 are configured such that when a data
record 430 (a key value pair) is added or deleted, or when a
value 730 in a data record 430 is altered, the data stores 400
make the updated information available on all of the data
stores 400. In certain embodiments, information is made
available on all of the data stores 400 by containing all infor-
mation in one or more data records 430 stored locally on each
data store 400. As illustrated in FIG. 12, first record 711
corresponds with third record 713 and second record 712
corresponds with fourth record 714. Accordingly, first key
721 and third key 723 contain the same information; and
second key 722 and fourth key 724 contain the same infor-
mation. So, if a process updates first record 711 by changing
first value 731 associated with first key 721, then data store
400a communicates via network 60 with data store 4005, and
data store 4005 updates its corresponding third value 733
associated with third key 723 to match first value 731. The
process may work in either direction. So, if a process updates
fourth record 714 by changing fourth value 734 associated
with fourth key 724, then data store 4005 communicates via
network 60 with data store 4004, and data store 400a updates
its corresponding second value 732 associated with second
key 722 to match second value 734. Although FIG. 12 shows
two data stores 400, any number of data stores 400 may be
used. By making information available on each data store
400, use of a global address space (such as a distributed
database or a distributed key-value store) allows said infor-
mation to be available to processes such as logic process 420
contained on the same host 170 as data store 400 in the event
that host 170 becomes temporarily disconnected from net-
work 60. As explained more fully in the description of FIGS.
16A and 16B, the addition of a communication system 440
and a data store 400 to shell 40 improves shell 40 by allowing
shell 40 to operate in unreliable network environments.

FIG. 13 illustrates an embodiment of the invention in
which many data stores 400 are configured in a ring 800. Each
data store 400 resides in a host 170 (not shown), but one host
may contain more than one data store 400. Data stores 400
communicate with each other over network 60. Data stores
400a, 4005, 400c, and 4004 also contain one or more data
records 430, network model 950, testing module 960, and
learning module 970 (FIG. 14A) as well as learning process
900 (FIG. 14). Although in some embodiments, the ring 800
illustrated in FIG. 13 may correspond to a physical embodi-
ment, it is understood that in many embodiments the ring 800
represents a logical configuration of data stores 400. In an
embodiment, data stores 400a, 40056, 400c, and 400d are
connected to form a ring 800 in which each data store 400
receives information from only one other data store 400 and
sends information to only one other data store 400, but the
data stores 400 are collectively all connected to each other.
Data store 4004 and data store 4005 are in communication via
first connection 63. Data store 4005 and data store 400c are in
communication via second connection 64. Data store 400¢
and data store 4004 are in communication via third connec-
tion 65. Data store 4004 and data store 4004 are in commu-
nication via fourth connection 66. Connections 63, 64, 65,
and 66 are made through network 60. In many embodiments,
connections 63, 64, 65, and 66 represent logical, rather than
physical, connections. The information transmitted among
the data stores 400 includes the addition, deletion, or alter-
ation of data records 430. As illustrated by FIG. 13, when, for
example, a data record 430 is altered in data store 4004, data
store 400a transmits information to data store 4005 via first
connection 63, instructing data store 4005 to alter the appro-
priate record in data store 4005. Data store 4005 then makes
the appropriate change in its own copy of said data record

10

15

20

25

30

35

40

45

50

55

60

65

42

430; and in turn, data store 4005 instructs data store 400c¢ via
second connection 64. Data store 400c¢ then repeats the same
process, by making the appropriate change in its own copy of
said data record 430 and instructing data store 400d to do the
same via third connection 65. Data store 4004 then notifies
data store 400a that all data stores 400 have received the
updated information via fourth connection 66.

In certain situations, embodiments of the invention may
experience periods of high usage. In such a situation, it can be
advantageous to configure data stores 400 configured into
ring 800 to determine when resource use is high, and, when
said resource use is high, temporarily refrain from commu-
nicating with other data stores 400. Accordingly, in certain
embodiments, each data store 400 tests its host 170 and net-
work 60 conditions before sending information (for example,
information updating a data record 430) to another data store
400 in ring 800. By reducing network 60 and host 170
resource use during periods of high usage, this improvement
enhances the performance and scalability of ring 800, and as
a result, improves the performance or reduces the resource
requirements necessary for any host 170 that is part of an
embodiment of the invention.

FIG. 13 also illustrates data stores 400a, 4005, 400c¢, and
400d each containing a respective network model 950, testing
module 960, and learning module 970. Data stores 400a,
4005, 400c, and 4004 are all a data store 400. A testing
module 960 tests resource utilization of hosts 170 and net-
work 60 in ring 800 by sending a number of relatively small
test packets 961 of information to the next data store 400 in
the ring 800. FIG. 13 illustrates the testing module 960 in data
sore 400¢ sending a test packet 961 to data store 4004 via third
connection 65 over network 60. When a data store 400 com-
municates with another data store 400 regarding a data record
430, if communication fails, each data store 400 will continue
to attempt said communication until successtul. However,
when a data store 400 sends a test packet 961, data store 400
will not attempt to retransmit a test packet 961 if communi-
cations fail. This is because the failure of communications
may be used as an indicator of network congestion. Each data
store 400 in ring 800 will transmit any test packets 961
received by said data store 400 to the next data store 400 in
ring 800 until each test packet 961 returns to the data store 400
which originated the test.

In certain embodiments, before a data store 400 transmits a
test packet 961 it has received to the next data store 400 in ring
800, the data store 400 will measure the resource utilization of
the host 170 on which data store 400 resides and record said
resource utilization in the test packet 961. In this manner, if
the test packet 961 returns to the data store 400 which origi-
nated the test, said data store 400 will receive a measurement
of the current resource utilization for each data store 400 in
ring 800. The resource utilization measurement may be the
Unix-style load average, but it is understood that any similar
type of measurement may be used. As each test packet 961
returns to the data store 400 which originated the test, said
data store 400 measures the time taken by that test packet 961
to traverse ring 800. Said data store 400 which originated the
test also records the total number of returning test packets 961
for the current network test.

Once all the test packets 961 have returned or data store 400
determines that any unreturned test packets 961 will not
return, then data store 400 evaluates whether the resource
utilization is too high to send information to the next data
store in ring 800. If resource use is too high, data store 400
will wait for a preconfigured amount of time (as a nonlimiting
example, 100 milliseconds) before attempting anothertest. In
certain embodiments, data store 400 determines whether

US 9,240,955 B1

43

overall resource use is too high by measuring (1) the total time
it takes for each test packet 961 to return to the originating
data store 400; (2) how many test packets 961 return to the
originating data store 400; and (3) the measured resource
utilization as measured by each data store 400 and recorded in
each test packet 961.

In certain embodiments, testing module 960 may use learn-
ing module 970 and network model 950 to predict future
overall resource utilization. Thus, in certain embodiments,
the measurements of overall resource use described herein are
recorded in network model 950 and used by data store 400 to
determine whether to send information to the next data store
400 in ring 800.

In certain embodiments, learning module 970 uses learn-
ing process 900, testing module 960, and network model 950
to predict future overall resource utilization and to determine
whether to send information to the next data store in ring 800.

FIG. 14 is a flow chart illustrating an embodiment of learn-
ing process 900, in which data store 400 and learning module
970 use network model 950 and testing module 960 to predict
future resource use and updates network model 950 based on
the evaluation of said predictions. After each step in learning
process 900, learning module 970 proceeds to the next step in
learning process 900. In testing step 910, testing module 960
initiates a test of overall resource utilization. In predicting
step 920, learning module 970 uses network model 950 and
the results of the test performed by testing module 960 in
testing step 910 to predict future overall resource utilization.
In transmitting step 930, data store 400 either transmits infor-
mation or does not transmit information based on the predic-
tion made by learning module 970 in predicting step 920. In
either case, data store 400, via testing module 950, tests
overall resource utilization again in transmitting step 930. In
feedback-evaluating step 940, learning module 970 updates
network model 950. It is understood that learning module 970
and learning process 900 use machine learning techniques to
perform predictions and update network model 950. Feed-
back-evaluating step 940 provides feedback to the learning
algorithm used. In certain embodiments, the learning algo-
rithm is Vapnik’s SVM algorithm. However, a wide variety of
machine learning algorithms may be used such as, for
example, non-probabilistic binary linear classifiers, nonlin-
ear classifiers, Bayesian classifiers, hidden Markov models,
and neural networks. Also, machine learning algorithms
enabled by Waikato Environment for Knowledge Analysis
(WEKA) may be used. We believe that Vapnik’s SVM algo-
rithm works well in certain embodiments of the invention
because it works well in a high-dimensional setting. High-
dimensional settings are settings where there are many vari-
ables.

Because we speculate that a ring 800 performs better when
a ring 800 is comprised of no more than eighty data stores
400, certain embodiments of the invention overcome this
limitation by configuring into multiple communications
rings, or multirings. As can be observed, this embodiment
reduces the time required to transmit a message to each data
store 400 in the network. An embodiment of such a configu-
ration is illustrated in FIG. 15.

FIG. 15 illustrates certain embodiments of the invention in
which the data stores 400 are configured such that they com-
municate through multiple rings 800. First ring 810 and sec-
ond ring 820 are each a ring 800, and are connected to form a
multiring 830. As shown in FIG. 15, first ring 810 contains
data stores 400a, 4005, 400¢, and 4004; and second ring 820
contains data stores 400¢, 400e, and 400f. Data stores 400a-
400f are all data stores 400. Data store 400a and data store
4005 are in communication via first connection 63. Data store

5

10

15

20

25

30

35

40

45

50

55

60

44

4005 and data store 400c¢ are in communication via second
connection 64. Data store 400c and data store 4004 are in
communication via third connection 65. Data store 4004 and
data store 400a are in communication via fourth connection
66. Data store 400¢ and data store 400¢ are in communication
via fifth connection 67. Data store 400 and data store 4007 are
in communication via sixth connection 68. Data store 400/
and data store 400¢ are in communication via seventh con-
nection 69. Connections 63, 64, 65, 66, 67, 68, and 69 are
made through network 60. In many embodiments, connec-
tions 63, 64, 65, 66, 67, 68, and 69 represent logical, rather
than physical, connections.

Information may be received by a logic process 420 or
synthesized by an evaluating process 621. Either logic pro-
cess 420 or evaluating process 621 may directly access a data
store 400, and either may indirectly access a data store 400 via
a communication system 440 (further demonstrating the
multi-instance distributed operation of communication sys-
tem 440 and data store 400). When either a logic process 420
or an evaluating process 621 accesses a data store 400 in such
a fashion that alters one or more data records 430 contained in
data store 400, said data store 400 may communicate that
change to a data record 430 throughout multiring 830. The
process by which data records 430 are updated is described
more fully in connection with FIG. 12. As described in the
following paragraph, a change may occur first on data store
400aq, but a change may occur first on any data store 400.

If a change occurs first on data store 400a, data store 400a
begins the process by sending information to data store 4005
via first connection 63. In turn, data store 4005 sends said
information to data store 400c¢ via second connection 64. Data
store 400¢ then sends said information to data store 4004 via
third connection 65 and to data store 400e via fifth connection
67. Data store 4004 then sends, via fourth connection 66,
confirming information to data store 4004 that all data stores
400 in first ring 810 have received the information. After data
store 400e receives the information, data store 400e sends
said information to data store 400f via sixth connection 68.
Data store 400fthen sends, via seventh connection 69, con-
firming information to data store 400c¢ that all data stores 400
in second ring 820 have received the information. In this
fashion, a data store 400 can send information to each other
data store 400 in multiring 830.

In certain embodiments, data stores 400 may be configured
to form multiring 830 and may perform the network testing
and load prediction techniques described herein.

In certain embodiments, the data stores 400 are configured
to automatically assemble into rings 800 forming multiring
830. In such an embodiment, data stores 400a, 4005, 400c¢,
and 4004 join first ring 810 until a predetermined maximum
number of data stores 400 join first ring 810. FIG. 15 implies
that the maximum number is 4, but any number may be used.
After a first ring 810 contains the maximum number of data
stores 400, the next data store 400 to attempt to join multiring
830 forms a second ring 820 containing the newly joining
data store 400 and one data store 400 that is contained in a first
ring 810. As shown by FIG. 15, when data store 400e attempts
to join multiring 830, data store 400e creates second ring 820
containing only data stores 400¢ and 400e. Data store 400¢, or
any data store creating a new ring 800, may use any suitable
selection technique for selecting which preexisting data store
to choose. After second ring 820 is created, newly joining data
stores 400 join second ring 820. As shown by FIG. 15, when
data store 400 attempts to join multiring 830, data store 400/
joins second ring 820. In this process, first ring 810 is a
so-called first level ring, and second ring 820 is a so-called
second level ring. New data stores 400 may join multiring 830

US 9,240,955 B1

45

until each data store 400 in a first level ring is also a member
of a second level ring. Then, when new data stores 400
attempt to join multiring 830, a new ring 800 is created
containing only the new data store 400 and a data store 400
contained in a second level ring, thereby creating a third level
ring. This process may be repeated ad infinatum, as permitted
by available host and network resources.

As used herein, the term “supernode” means a data store
400 that is a member of more than one ring (for example, by
being a member of a first level ring and a second level ring).
As an example, data store 400¢ in FIG. 15 is a supernode.

It is understood that supernodes must use more resources
than non-supernodes to communicate information to other
data stores 400. This is shown, for example, in FIG. 15,
whereby data store 400¢ must send information to both data
store 4004 and data store 400e. It is also understood that a data
store 400 may run on a host 170 along with other processes
described herein as running on a host 170. Different hosts 170
may be configured to have different resources available. For
example, some hosts 170 may have faster or a greater number
of processors, more memory, or may be connected to higher
speed or less congested portions of network 60. Alternatively,
the processes running on some hosts 170 may require more
system resources than the processes running on other hosts
170. Therefore, it is desirable to reconfigure multiring 830
such that multiring 830 does not necessitate that a host 170
with low available resources be a supernode.

Certain embodiments automatically detect underutilized
and overutilized hosts 170 and reconfigure multiring 830 to
make underutilized hosts 170 supernodes and to make over-
utilized hosts 170 which are supernodes not act as supern-
odes.

Using FIG. 15 as an example, if data store 400c¢ is overuti-
lized and data store 400e is underutilized, multiring 830 may
swap data store 400c¢ and data store 400e. In this process, data
store 400e becomes a member of ring 810. Then, data store
400c becomes amember of ring 820 and is removed from ring
810. By this process, data store 400e becomes a supernode.

Although FIG. 15 shows two rings 800, any number of
rings 800 may be used, and each ring 800 may contain any
number of data stores 400. However, we speculate that the
performance of ring 800 is better if a ring 800 contains not
more than eighty data stores 400.

FIG. 16A illustrates an embodiment of the invention where
logic process 420 communicates with (interfaces with) data
store 400 using (through) communication system 440. Logic
process 420 requests or transmits information to communi-
cation system 440. Communication system 440 analyzes the
information communicated to it by logic process 420, and
adds, updates, alters, or retrieves information to or from data
store 400. Communication system 440 then communicates to
logic process 420 a response to said request or transmittal of
information. As discussed more fully in the description of
FIG. 16B, the data store 400 may contain one or more topics
971 and one or more communicative-values 972. Topics 971
and communicative-values 972 may be stored in one or more
data records 430, which may be variable records 770.

FIG. 16B is a diagram showing a group communication
framework, and further illustrates how logic process 420
communicates with data store 400 via communication system
440. It is understood that each step depicted by FIG. 16B is
performed when logic process 420 requests or transmits
information to communication system 440. The actions that
correspond to steps 1010 through 1120 cause information to
be stored in one or more data records 430 in data store 400. In
particular, topics 971 and communicative-values 972 may be
stored in one or more data records 430. It is also understood

10

15

20

25

30

35

40

45

50

55

60

65

46

that there may be multiple hosts 170 each containing one or
more logic processes 420 and one or more communication
systems 440. It is understood that a logic process 420 may
communicate with another logic process 420 by sending
information to communication system 440, which in turn
sends information to data store 400, which in turn may com-
municate information with other data stores 400, thereby
making said information available to the other communica-
tion systems 440 and in turn to other logic processes 420. In
certain embodiments, steps 1010 through 1120 are all Java
API methods available to be called or executed by code run-
ning in a logic process 420. It is understood that the group
communication framework may also be a publish-subscribe
framework.

In joining step 1010, logic process 420 joins a group. In
certain embodiments, each group has a name, a list of mem-
bers, a list of readers, and a list of changemakers (members
which have requested addition to or removal from the group).
These attributes are stored by communication system 440 in
data store 400 in group record 750 (FI1G. 16C). Group record
750 stores information which represents whether the group
membership has changed. Group state may be “stable” or
“unstable.” When a logic process 420 requests to join a group,
communication system 440 adds logic process 420 to a list
containing group membership information—the list of mem-
bers. Communication system 440 also adds logic process 420
to a list of changemakers, sets the group state to be unstable,
and removes all entries from the list of readers.

In leaving step 1020, logic process 420 leaves a group.
When a logic process 420 requests to leave a group, commu-
nication system 440 updates group record 750 (FIG. 16C) to
remove logic process 420 from the list containing group
membership information in group record 750. Communica-
tion system 440 also updates record 750 by adding logic
process 420 to a list of changemakers, setting the group state
to be unstable, and removing all entries from the list of read-
ers.

In group state reading step 1030, logic process 420 requests
the current state of the group from communication system
440, which retrieves information related to the group from
group record 750 (FIG. 16C) stored in data store 400. After
retrieving said information, communication system 440,
sends said information to logic process 420, which then reads
said information representing the state of the group for which
information was requested. In certain embodiments, logic
processes 420 periodically check the current state of a group
via communication system 440. If the group state read by
logic process 420, after retrieval by communication system
440, is stable, communication system 440 takes no further
action. If group state is unstable, then communication system
440 examines and records the then current changemakers list.
If the then current changemakers list indicates that the group
membership has changed since the last time logic process 420
has accessed group state (for example, if there are more
entries in the changemakers list than previously recorded),
then communication system 440 reads the current member-
ship of the group and adds logic process 420 to the list of
readers. If the changemakers list indicates that the group
membership has not changed since the last time logic process
420 has accessed group state, then communication system
440 does not read the current membership of the group.

In registering step 1040, logic process 420 registers a topic
971. Communication system 440 assigns a unique number
with a topic 971 and records the name of the topic 971, along
with other information necessary to carry out the functions
communication system 440, in data store 400. This may be
recorded in, for example, a data record 430 such as variable

US 9,240,955 B1

47
770 (FIG. 16C). Accordingly, other logic processes 420 may
access topic 971 (including any information stored in said
data record 430 associated with said topic 971). Any number
of'topics 971 may be registered by the communication system
440.

In publishing step 1050, logic process 420 transmits a
communicative-value 972 corresponding to a topic 971. After
a topic 971 is registered in communication system 440, logic
process 420 may transmit newly measured or synthesized
data associated with said topic 971 to communication system
440 by publishing a communicative-value 972 on a topic 971.
Communication system 440 ensures that logic process 420 is
permitted to publish communicative-values 972 on said topic
971. Communication system 440 records the total number of
communicative-values 972 published on each topic 971,
sequentially orders published communicative-values 972,
and associates a sequence number with each published com-
municative-value 972 corresponding to the order in which the
communicative-values 972 were published. Communication
system 440 then transmits information to data store 400,
which stores including said information and said sequence
number in a value 971. Data store 400 records one or more
values 971 in one or more data records 430 which may be
variable records 770 (FIG. 16C). It is understood that logic
process 420 may publish a first communicative-value 972 on
a topic 971, a second communicative-value 972 on a topic
971, and so on. The first communicative-value 972 published
on a topic 971 may be associated with the number, one; and
the second value published on a topic may be associated with
the number, two. Accordingly, communication system 440
records the ordering of the sequence of communicative-val-
ues 972 published on a topic 971.

In subscribing step 1060, logic process 420 subscribes to a
published topic 971 by requesting a subscription from com-
munication system 440. Logic process 420 also provides a
variable representing time duration to communication system
440 indicating the period of time for which logic process 420
requires communication system 440 to retain information for
use by logic process 420. This is called a lease period. Lease
periods, time of publication, and other time values are syn-
chronized in the network using any suitable time synchroni-
zation method such as NTP or DNT algorithms including,
without limitation, Mattern’s GVT algorithm. Communica-
tion system 440 ensures that logic process 420 is permitted to
access said topic 971 and communicative-values 972 pub-
lished on said topic 971. If so, communication system 440
records that fact and permits logic process 420 to subscribe.
In addition, communication system 440 generates a unique
number to identify the subscription of logic process 420 to
said topic. The subscription information is recorded in a data
record 430 such as variable record 770 (FIG. 16C).

In alternate subscribing step 1070, logic process 420 sub-
scribes to a published topic 971 by requesting a subscription
from communication system 440. Alternate subscribing step
1070 differs from subscribing step 1060 in that logic process
420 provides to communication system 440 the unique iden-
tifier that has already been created to associate logic process
420 with said topic 971. Communication system 440 verifies
that the lease period for logic process 420 has not expired and
retrieves the appropriate state record 760 from data store 400.
Communication system 440 then transmits the state informa-
tion stored in state record 760 to logic process 420 along with
the sequence number of the most recently evaluated and pro-
cessed value. Alternate subscribing step 1060 may be used
where a logic process 420 is terminated and a replacement
logic process 420 is deployed by deployer 160. This step is

10

15

20

25

30

35

40

45

50

55

60

65

48

used by embodiments of the invention to achieve the property
of reconfigurability described herein.

In new value reading step 1080, logic process 420 requests
and communication system 440 provides, if available, the
newest communicative-value 972 published on a requested
topic 971. Communication system 440 provides this informa-
tion by accessing the appropriate communicative-value 972
along with any appropriate variable records 770 from data
store 400. Communication system 440 uses information it
retrieves from communicative-value 972 and any retrieved
variable records 770 to verify that logic process 420 is per-
mitted to access communicative-values 972 associated with
said topic 971. Communication system 440 also records the
fact that logic process 420 has read said communicative-value
972 on said topic 971 in a variable record 770 in data store
400.

In certain embodiments, if a communicative-value 972
associated with the next expected sequence number to be
published on a topic 971 does not yet exist in data store 400 as
apparent to communication system 440, then the sequence
number associated with the most recently published commu-
nicative-value 972 on said topic 971 is retrieved. This is the
then maximum sequence number. If the then maximum
sequence number is greater than or equal to the next expected
sequence number, then communication system 440 deduces
that the next expected sequence number has already been
removed from the communications system 440 and data store
400 by the communications system 440 in garbage collecting
step 1110. If the then maximum sequence number is less than
the next expected sequence number, then the next expected
sequence number has not been published yet. If the next
expected sequence number exists, then the communicative-
value 972 associated with said sequence number may be
retrieved and transmitted to logic process 420 by communi-
cation system 440.

In ordered value reading step 1090, logic process 420
requests and communication system 440 provides, if avail-
able, the communicative-value 972 published on a requested
topic 971 associated with a particular sequential order num-
ber associated with said communicative-value 972. In this
step, logic process 420, for example, may request the fifth
communicative-value 972 published on a topic 971. Commu-
nication system 440 then retrieves, if available, the appropri-
ate communicative-value 972 and variable records 770 from
data store 400. If appropriate information is available, com-
munication system 440 provides to logic process 420 the fifth
communicative-value 972 that was published. Communica-
tion system 440 also verifies that logic process 420 is permit-
ted to access communicative-values 972 associated with said
topic 971 by accessing and analyzing the contents of the
communicative-value 972 and one or more retrieved variable
records 770 from data store 400. Communication system 440
also records in one or more variable records 770 in data store
400 the fact that logic process 420 has read said communica-
tive-value 972 on said topic 971. This process may be per-
formed for any of the sequentially published values.

In deleting step 1100, logic process 420 indicates that it has
finished using a communicative-value 972. More than one
logic process 420 may be required to read and process any
given communicative-value 972. After logic process 420 has
read and processed a communicative-value 972, then it com-
municates to communication system 440 that it has finished
processing said communicative-value 972. Communication
system 440 then records the fact that logic process 420 has
finished processing said communicative-value 972 in a vari-
ablerecord 770 in data store 400. Communication system 440
does not delete data during deleting step 1100, but merely

US 9,240,955 B1

49

indicates that the data is no longer needed by the particular
logic process 420. Data is actually removed from data store
400 in garbage collecting step 1120.

In stateful deleting step 1110, a logic process 420 indicates
that it has finished using a value and directs communication
system 440 to store its state. Stateful deleting step 1110 and
deleting step 1100 may be performed independently, and
certain embodiments of the invention may implement stateful
deleting step 1110 without implementing deleting step 1100.
In addition to performing all the steps of deleting step 1100,
in stateful deleting step 1110, communication system 440
also records the state of logic process 420 in data store 400 in
a state record 760. As can be understood, stateful deleting step
1110 and alternate subscribing step 1070 are logically linked.
Stateful deleting step 1110 stores the state of logic process
420 in a state record 760 in data store 400. Alternate deleting
step 1070 is the counterpart of stateful deleting step 1110 in
that, in alternate deleting step 1070, a prior state of logic
process 420 is retrieved from (and is loaded into) logic pro-
cess 420. The combination of alternate deleting step 1070 and
stateful deleting step 1110 effectively provide the property of
reconfigurability by allowing the behavior of hosts 170 to be
altered by replacing logic processes 420 on hosts 170.

It is understood that all of, or a portion of, the information
stored in logic process 420 is considered the “state” of said
logic process 420. In certain embodiments, the state of a logic
process 420 may include current or past values that have been
published on topics to which logic process 420 subscribes and
has read via subscribing step 1060 or alternate subscribing
step 1070. These values may be information obtained via an
input 20 or synthesized by logic process 420 in evaluating
process 621, and more specifically in evaluating step 630. Itis
understood that in storing step 640, logic process 420 per-
forms publishing step 1050. It is also understood that logic
process 420 can serialize its state into a single variable. In
certain embodiments, this is accomplished by encoding all of
the variables comprising the state of logic process 420 into a
single string variable. Any suitable encoding and decoding
scheme may be used.

It is understood that in alternate subscribing step 1070,
logic process 420 retrieves a state for logic process 420. In
certain embodiments, logic process 420 decodes the state
retrieved in subscribing step 1070 and sets the current value of
each variable of logic process 420 to the value stored in the
retrieved state. In this fashion, control process 410 may turn
off a logic process 420 (see FIGS. 10 and 11), receive a new
logic process 420 with different properties from deployer 160
and turn on the new logic process 420. The new logic process
420 can then load all of the information that was previously
contained in the old logic process 420 into the new logic
process 420.

In garbage collecting step 1120, a process removes any
values stored in data store 400 that are no longer needed by
communication system 440. A value is no longer needed by
communication system 440 if all logic processes 420 that
have subscribed to the topic on which a value was published
no longer need that value. A logic process 420 does not need
a value if either (1) that logic process indicated that it has
finished using said value by performing deleting step 1100; or
(2) the lease period has expired for said topic subscription for
said logic process 420. In other words, communication sys-
tem 440 does not need a value if enough time has passed or if
all logic processes 420 have finished using a communicative-
value 972. As can be appreciated, garbage collecting step
1120 allows the communication system 440 to publish only
one communicative-value 972 for each newly acquired or
synthesized piece of information. This is because deletion of

25

30

35

40

45

55

50

any such communicative-value 972 does not occur until after
logic processes 420 have finished using said communicative-
value 972. This step allows for more efficient use of resources.

FIG. 16C describes how communication system 440
updates records in 430 in data store 400 to accomplish the
steps described in FIG. 16B. Data store 400 contains any
number of data records 430. Group record 750, state record
760, and variable record 770 are all data records 430. Data
store 400 may contain any number of group records 750, state
records 760, or variable records 770.

Example 3

FIG. 17 illustrates an exemplar golf course watering sys-
tem 1200 (demonstrating how a logic process 420 can com-
municate with another logic process 420 through the use of
data stores 400 as enabled by communication system 440).
Instrument 21 is an input 20 that measures soil moisture
content. Hosts 170d, 170e, and 170f are hosts 170 and are
each connected to network 60. Host 170d is connected to first
subnetwork 61. Host 170e is connected to second subnetwork
62. First subnetwork 61 and second subnetwork 62 are wire-
less networks which form part of network 60. Although not
shown, each host 170 contains a data store 400, a communi-
cation system 440, a control process 410, a logic process 420,
an evaluating process 621 and other components as disclosed
herein. Host 1704 is connected to instrument 21. Golf course
data store 1205 represents, collectively, the data stores 400 of
hosts 1704, 170e, and 170f. Deployer 160 is connected to
network 60. Although not shown, deployer 160 may be con-
nected to a model generator 130, analyzer 140, and compiler
150. Solenoid 31 is an output 30. Solenoid 31 is connected to
host 170e. Solenoid 31 is also connected to valve 33. Valve 33
is coupled to pipe 35. Sprinklers 37 are connected to pipe 35.
Water 39 flows into pipe 35. When valve 33 is open, water 39
flows through sprinklers 37 to irrigate golf course grounds.
This example 3 shows how golf course watering system 1200
measures soil moisture content to control valve 33; how a
logic process 420 may be redeployed; and how golf course
watering system 1200 operates in the event that first subnet-
work 61 becomes unoperational.

Hosts 1704 and 170e¢ are ARM-based embedded linux
systems powered by lithium ion battery power and solar
power.

Host 1704 and 170e, as well as first subnetwork 61 and
second subnetwork 62 are in the outside environment,
whereas network 60, deployer 160, and host 170f'may beina
data room under controlled conditions.

Deployer 160 deploys unique logic processes 420 to hosts
170d, 170e, and 170f. A control process 410 on each host
loads the appropriate deployed logic process 420 into
machine 180.

Hosts 1704, 170e, and 170f each use their respective com-
munication system 440 to join a group. It is understood that a
logic process 420 performs this operation, as is disclosed
elsewhere herein. For convenience, this example will state
that hosts 1704, 170e, and 170f are perform actions, although
it is understood that such actions are performed by compo-
nents contained within each host, as described more fully
elsewhere herein. Additionally, the term “communication
system” 440 in example 3 refers collectively to each commu-
nication system 440 (and accompanying data store 400)
residing on each host 170.

Host 1704 registers moisture topic 1210 in communication
system 440. Host 1704 begins to take repeating measure-
ments of soil moisture using instrument 21. For each mea-
surement of soil moisture, host 1704 publishes a correspond-

US 9,240,955 B1

51

ing moisture value 1212 to moisture topic 1210 using
communication system 440. After each moisture value 1212
is published using communication system 440 (and transmit-
ted to data store 400), the published moisture value 1212 will
propagate to each data store 400 (as disclosed elsewhere
herein).

Host 170f registers sprinkler control topic 1220 in commu-
nication system 440.

Host 170e subscribes to sprinkler control topic 1220 using
communication system 440.

Host 170f'subscribes to moisture topic 1210 using commu-
nication system 440, and repeatedly receives each moisture
value 1212 published by host 170d. New moisture values
1212 are received and processed according to logic loop 600
(FIG. 11). Each time host 170freceives a new moisture value
1212, the moisture value 1212 is evaluated by evaluating
process 621. In this example, host 170f evaluates (in evaluat-
ing process 621) the current time, the currently received mois-
ture value 1212, as well as previously received moisture val-
ues 1212 and associated times. Said evaluation is performed
in evaluating process 621 according to logic determined by
model generator 130, analyzer 140, and compiler 150. The
evaluation may be, for example, “if moisture content has been
below a threshold amount for more than eight hours, and the
current time is after 6:00 P.M., then publish ‘on’ to the sprin-
kler control topic.” If, based on said evaluation, host 170f
determines that it should publish a new sprinkler control
value 1222, it does so. Thus, host 170f evaluates the moisture
content of the soil, determines whether to turn the sprinkler on
or off, and possibly publishes a sprinkler control value 1222
on sprinkler control topic 1220.

As it has subscribed to sprinkler control topic 1220, host
170e repeatedly receives each sprinkler control value 1222
published by host 170f. New sprinkler control values 1222 are
received and processed according to logic loop 600 (FIG. 11).
Each time host 170e receives a new sprinkler control value
1222, the sprinkler control value 1222 is evaluated by evalu-
ating process 621. In this example, the evaluating logic in
evaluating process 621 determines whether host 170f has
instructed sprinklers 37 to be on or off. If evaluating process
621 in host 170e determines that it has been instructed to turn
the sprinkler on, host 170e directs solenoid 31 to open valve
33, allowing water 39 to flow to the sprinklers 37. If evaluat-
ing process 621 in host 170e determines that it has been
instructed to turn the sprinkler off, host 170e direct solenoid
31 to close valve 33, restricting the flow of water 39 to the
sprinklers 37.

Host 170e may also register solenoid status topic 1230 to
which host 170f subscribes. Host 170e repeatedly measures
the status of solenoid 31 and publishes a solenoid status value
1232 on solenoid status topic 1230. Host 170f then, effec-
tively, can receive direct feedback from the solenoid 31 and
indirect feedback from instrument 21. Accordingly, host 170/
may have other actions it can take when solenoid 31 become
unoperational. For example, host 170/ could send an email or
text message to a supervising groundskeeper. Alternatively, in
other embodiments, there may be more than one solenoid 31,
valve 33, pipe 35, connected to sprinklers 37. If one solenoid
31 is unable to open and provide water 39, then other sole-
noids 31 could be directed to open a valve 33, allowing the
golf course watering system 1200 to operate in the event of
equipment failure.

As may be observed this example may apply to other
situations, such as situations where other resources are used
(including, without limitation, electricity and oil), there may
be varying costs associated with use of each resource. Thus,
evaluating process 621 may be configured such that, where a

10

25

40

45

[

0

o

5

52

lower cost resource may be used, it will be used. The cost of
such resources may be published to the communication sys-
tem 440. Therefore, evaluating process may continually
reevaluate the availability and cost of resources to achieve a
desired goal.

Unreliable Network

Example 3 operates under potentially unreliable condi-
tions. For example, host 170d (or 170¢) may run out of battery
power and the then currently available solar power may not be
enough to power host 170d. Therefore, host 1704 could
remain shut off for a period of time. Additionally, first sub-
network 61 (or second subnetwork 62) may have interference
which temporarily interrupts communications. In either case,
there is the possibility that, during the operation of system
1200, that portions of system 1200 may become discon-
nected.

In the event that first subnetwork 61 becomes unopera-
tional, host 1704 will continue to measure soil moisture and
publish new moisture values 1212 on the moisture topic 1210
via communication system 440 to its local data store 400.
However, the newly published moisture values 1212 will not
be received (and thus, not read) by host 170f. However, host
170f'will continue to evaluate newly published solenoid sta-
tus values 1232 and will continue to publish new sprinkler
control values 1222.

As an example, if first subnetwork 61 becomes unopera-
tional after host 170f'has published a sprinkler control value
1222 on sprinkler control topic 1220, instructing solenoid 31
to open valve 33, host 170f may, in addition to evaluating
newly published moisture values 1212, evaluate the period of
time solenoid 31 has been in a state causing valve 33 to allow
water 39 to flow through pipe 35. Thus, host 170/ may publish
a sprinkler control value 1222 to sprinkler control topic 1220
directing solenoid 31 to close valve 33 based on the fact that
solenoid 31 has been open for too long.

Redeployment

For any number of reasons, it may be desirable to have the
logic on host 170f changed. For example, a new host 170 may
be added to the system 1200 with, for example, new inputs or
outputs. Alternately, a groundskeeper may desire to alter the
operational logic of host 170f because, for example, the sea-
sons change or a course needs repair. Host 170fmay be altered
without restarting host 170f and without resetting any opera-
tional information that host 170f'has stored locally. The rede-
ployment process is described in more detail in connection
with FIGS. 10, 11, and 16B.

In example 3, after host 170f reads, evaluates, and acts on
a newly published value, it saves its current state, as is
described more fully in stateful deleting step 1110. If host
170f receives a message from deployer 160 instructing host
170fto execute new logic, new logic may be deployed. Host
170f then retrieves the appropriate state of its logic, as is
described more fully in alternate subscribing step 1070. Host
170f'may then continue to process newly published values.

If, for example, deployer 160 instructs host 170fto deploy
new logic when valve 33 is open, the new logic deployed in
host 170f; has all of the same knowledge has the previously
deployed logic. Thus, host 170f knows, for example, how
long water 39 has been flowing through sprinklers 37. If host
1707 did not retrieve the state as it does, host 170/ may keep
water 39 flowing through sprinklers 37 for too long.

Example 3 is provided as an instructional example. As
precise operation becomes increasingly important (for

US 9,240,955 B1

53

example, in the control of operations in a nuclear power plant
or in the control of military weapons systems or critical enter-
prise resource systems), the importance of the intelligent
redeployment described herein becomes apparent.

The foregoing description of the embodiments of the
invention has been presented for purposes of illustration and
description. It is not intended to be exhaustive or to limit the
invention to the precise form disclosed, and modifications and
variations are possible in light of the above teachings or may
be acquired from practice of the invention. The embodiments
were chosen and described in order to explain the principles
of the invention and its practical application to enable one
skilled in the art to utilize the invention in various embodi-
ments and with various modifications as are suited to the
particular use contemplated. It is intended that the scope of
the invention be defined by the claims appended hereto, and
their equivalents.

Embodiments of the systems 10, 100, 201, 300, and 1200
and/or components thereof, can be implemented in hardware
and/or software. Further, it will be obvious to those having
skill in the art that many changes may be made to the details
of'the above-described embodiments without departing from
the underlying principles of the invention. For example, any
suitable combination of the components of the systems 10,
100, 201, 300 and/or 1200 is possible. The scope of the
present invention should, therefore, be determined only by
the following claims.

What is claimed is:

1. A system comprising:

a first networked node comprising: a first computer, a first
data store, a first control process, a first one or more logic
processes, a first one or more evaluating processes, and
a first communication system, said first control process
having a capability to deploy said first one or more logic
processes, and said first one or more logic processes
each having a capability to cause said first one or more
evaluating processes to begin,

said first data store, said first control process, said first one
or more logic processes, said first evaluating process,
and said first communication system operating on said
first computer, and

a second networked node comprising: a second computer,
a second data store, a second control process, a second
one or more logic processes, a second one or more
evaluating processes, and a second communication sys-
tem, said second control process having a capability to
deploy said second one or more logic processes, and said
second one or more logic processes each having a capa-
bility to cause said second one or more evaluating pro-
cesses to begin, said second data store, said second con-
trol process, said second one or more logic processes,
said second one or more evaluating processes, and said
second communication system operating on said second
computer, and

wherein said first data store provides access to a global
address space and said second data store provides access
to said global address space,

wherein data is available in said global address space,

wherein said first networked node and said second net-
worked node are networked together, and

wherein said first one or more logic processes is capable of
retrieving said data from said global address space via
said first communication system,

wherein said second one or more logic processes is capable
ofretrieving said data from said global address space via
said second communication system,

10

20

25

30

35

40

45

50

55

60

65

54

wherein said first control process is capable of deploying a
first one of said first one or more logic processes with a
first set of instructions,

wherein said first one of said first one or more logic pro-
cesses is capable of causing a first one of said first one or
more evaluating processes to begin executing said first
set of instructions, and

wherein said first one of said first one or more evaluating
processes is capable of evaluating said data to synthesize
a first result using said first set of instructions,

wherein said first one of said first one or more evaluating
processes is capable of storing said first result as said
data in said global address space via said first commu-
nication system,

wherein said first one of said first one or more logic pro-
cesses is capable of causing a second one of said first one
or more evaluating processes to begin executing said
first set of instructions.

2. The system according to claim 1, wherein said first data

store and said second data store operate as key-value stores.

3. The system according to claim 2, wherein said global
address space operates as a key-value store.

4. The system according to claim 1, wherein said first one
or more logic processes is capable of altering said data in said
global address space via said first communication system,
wherein said second one or more logic processes is capable of
altering said data in said global address space via said second
communication system, and

wherein said first communication system and said second
communication system are publish-subscribe commu-
nication systems.

5. The system according to claim 1, wherein said first data
store contains a first local copy of said data available in said
global address space and said second data store contains a
second local copy of said data available in said global address
space.

6. The system according to claim 5, wherein when first
information of said data available in said global address space
is altered in said first data store, said second local copy of said
data available in said global address space in said second data
store is updated correspondingly with altered said first infor-
mation.

7. The system according to claim 6, further comprising a
plurality of additional networked nodes, each additional net-
worked node comprising an additional computer and an addi-
tional data store, each of said plurality of additional data
stores providing access to said global address space, wherein
said first networked node, said second networked node, and
said plurality of additional networked nodes are networked
together.

8. The system according to claim 7, wherein said plurality
of'additional data stores each contain an additional local copy
of said data available in said global address space.

9. The system according to claim 8, wherein when said first
information of said data is altered in said first data store, each
of said additional local copies is updated correspondingly
with said altered first information.

10. The system according to claim 9, wherein when second
information of said data available in said global address space
is altered in said second data store, said first local copy and
said additional local copy in each of said plurality of addi-
tional data stores are updated correspondingly with said
altered second information.

11. The system according to claim 10, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores are configured to cause updates of said first

US 9,240,955 B1

55

local copy and said additional local copy in each of said
plurality of additional data stores to propagate according to a
pattern.
12. The system according to claim 11, wherein said pattern
is a ring.
13. The system according to claim 11, wherein said pattern
is a multiring.
14. The system according to claim 13, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores, collectively, have a capability to reconfig-
ure said pattern.
15. The system according to claim 14, wherein said recon-
figuration capability can be selectively invoked to swap a
selected two of said first data store, said second data store, and
said plurality of additional data stores.
16. The system according to claim 15, wherein said recon-
figuration capability also includes a capability to select said
selected two of said first data store, said second data store, and
said plurality of additional data stores.
17. The system according to claim 12, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprises respectively a testing
module, wherein said testing modules have the capability to
collectively perform a test of resources available to a set of
ringed computers selected from the group comprised of said
first computer, said second computer, and said plurality of
additional computers, each respective one of said set of com-
puters associated with a respective one of said testing mod-
ules, and wherein an initiating one of said testing modules in
said set of ringed computers has the capability to initiate said
test for testing in other ringed computers in said set of ringed
computers and to calculate a result based on said test.
18. The system according to claim 13, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprises respectively a testing
module, wherein said testing modules have the capability to
collectively perform a test of resources available to a set of
ringed computers selected from the group comprised of said
first computer, said second computer, and said plurality of
additional computers, each respective one of said set of com-
puters associated with a respective one of said testing mod-
ules, and wherein an initiating one of said testing modules in
said set of ringed computers has the capability to initiate said
test for testing in other ringed computers in said set of ringed
computers and to calculate a result based on said test.
19. The system according to claim 1, wherein said first
communication system and said second communication sys-
tem communicate via said global address space.
20. The system according to claim 19,
wherein said first control process is capable of deploying a
second one of said first one or more logic processes with
a next set of instructions, wherein said second one of
said first one or more logic processes is capable of caus-
ing a second one of said first one or more evaluating
processes to begin executing said next set of instruc-
tions,
wherein said first one of said first one or more logic pro-
cesses further comprises a first state and said execution
of said first set of instructions by said first one of said
first one or more evaluating processes is stateful,

wherein said second one of said first one or more logic
processes further comprises a second state and said
execution of said next set of instructions by said second
one of said first one or more evaluating processes is
stateful.

5

10

15

20

25

30

35

40

45

50

55

60

65

56

21. The system according to claim 20,

wherein prior to executing said next set of instructions, said
second one of said first one or more logic processes
copies said first state into said second state and said first
one of said first one or more logic processes causes said
first one of said first one or more evaluating processes to
stop executing said first set of instructions.

22. The system according to claim 1, wherein said second
one of'said first one or more evaluating processes is capable of
evaluating said data to synthesize a next result using said first
set of instructions.

23. The system according to claim 22, wherein said second
one of'said first one or more evaluating processes is capable of
storing said next result as said data in said global address
space via said first communication system.

24. The system according to claim 1, wherein said second
control process is capable of deploying a first one of said
second one or more logic processes with a second set of
instructions, and wherein said first one of said second one or
more logic processes is capable of causing a first one of said
second one or more evaluating processes to begin executing
said second set of instructions.

25. The system according to claim 24, wherein said first
one of said second one or more evaluating processes is
capable of evaluating said data to synthesize a second result
using said second set of instructions.

26. The system according to claim 25, wherein said first
one of said second one or more evaluating processes is
capable of storing said second result as said data in said global
address space via said second communication system.

27. The system according to claim 1, wherein said first
control process has a capability to deactivate said first one or
more logic processes.

28. The system according to claim 26, wherein said first
control process has a capability to deactivate said first one or
more logic processes.

29. The system according to claim 27, wherein said first
control process is capable of deploying a second one of said
first one or more logic processes with a next set of instruc-
tions, wherein said second one of said first one or more logic
processes is capable of causing a second one of said first one
or more evaluating processes to begin executing said next set
of instructions.

30. The system according to claim 28, wherein said first
control process is capable of deploying a second one of said
first one or more logic processes with a next set of instruc-
tions, wherein said second one of said first one or more logic
processes is capable of causing a second one of said first one
or more evaluating processes to begin executing said next set
of instructions.

31. The system according to claim 29, wherein said second
one of said first one or more logic processes can replace said
first one of said first one or more logic processes without loss
of information.

32. The system according to claim 30, wherein said second
one of said first one or more logic processes can replace said
first one of said first one or more logic processes without loss
of information.

33. A system comprising:

a first networked node comprising: a first computer, a first
data store, a first control process, a first one or more logic
processes, a first one or more evaluating processes, and
a first communication system, said first control process
having a capability to deploy said first one or more logic
processes, and said first one or more logic processes
each having a capability to cause said first one or more
evaluating processes to begin,

US 9,240,955 B1

57

said first data store, said first control process, said first one
or more logic processes, said first evaluating process,
and said first communication system operating on said
first computer, and

a second networked node comprising: a second computer,

a second data store, a second control process, a second
one or more logic processes, a second one or more
evaluating processes, and a second communication sys-
tem, said second control process having a capability to
deploy said second one or more logic processes, and said
second one or more logic processes each having a capa-
bility to cause said second one or more evaluating pro-
cesses to begin, said second data store, said second con-
trol process, said second one or more logic processes,
said second one or more evaluating processes, and said
second communication system operating on said second
computer, and

wherein said first data store provides access to a global

address space and said second data store provides access
to said global address space,

wherein data is available in said global address space,

wherein said first networked node and said second net-

worked node are networked together,
wherein said first control process receives one or more
control messages from a deployer, wherein said
deployer is external to said first networked node and is
external to said second networked node, wherein said
one or more control messages may contain code, and
wherein said first control process has the capability to
deploy said code as said first one or more logic processes
in response to said one or more control messages and to
deactivate said first one or more logic processes in
response to said one or more control messages,

wherein said first communication system and said second
communication system communicate via said global
address space,
wherein said first one or more logic processes is capable of
retrieving said data from said global address space via
said first communication system and wherein said sec-
ond one or more logic processes is capable of retrieving
said data from said global address space via said second
communication system,
wherein said first control process is capable of deploying a
first one of said first one or more logic processes with a
first set of instructions, and wherein said first one of said
first one or more logic processes is capable of causing a
first one of said first one or more evaluating processes to
begin executing said first set of instructions,
wherein said first one of said first one or more evaluating
processes is capable of evaluating said data to synthesize
a first result using said first set of instructions,

wherein said first one of said first one or more evaluating
processes is capable of storing said first result as said
data in said global address space via said first commu-
nication system,

wherein said first one of said first one or more logic pro-

cesses is capable of causing a second one of said first one
or more evaluating processes to begin executing said
first set of instructions.

34. The system according to claim 33, wherein said first
data store and said second data store operate as key-value
stores.

35. The system according to claim 34, wherein said global
address space operates as a key-value store.

10

15

20

25

30

35

40

45

50

55

60

65

58

36. The system according to claim 33,

wherein said first one or more logic processes is capable of
retrieving said data from said global address space via
said first communication system,

wherein said second one or more logic processes is capable

of retrieving said data from said global address space via
said second communication system,

wherein said first one or more logic processes is capable of

altering said data in said global address space via said
first communication system,

wherein said second one or more logic processes is capable

of altering said data in said global address space via said
second communication system, and

wherein said first communication system and said second

communication system are publish-subscribe commu-
nication systems.

37. The system according to claim 33, wherein said first
data store contains a first local copy of said data available in
said global address space and said second data store contains
a second local copy of said data available in said global
address space.

38. The system according to claim 37, wherein when first
information of said data available in said global address space
is altered in said first data store, said second local copy of said
data available in said global address space in said second data
store is updated correspondingly with altered said first infor-
mation.

39. The system according to claim 38, further comprising a
plurality of additional networked nodes, each additional net-
worked node comprising an additional computer and an addi-
tional data store, each of said plurality of additional data
stores providing access to said global address space, wherein
said first networked node, said second networked node, and
said plurality of additional networked nodes are networked
together.

40. The system according to claim 39, wherein said plural-
ity of additional data stores each contain an additional local
copy of said data available in said global address space.

41. The system according to claim 40, wherein when said
first information of said data is altered in said first data store,
each of said additional local copies is updated correspond-
ingly with said altered first information.

42. The system according to claim 41, wherein when sec-
ond information of said data available in said global address
space is altered in said second data store, said first local copy
and said additional local copy in each of said plurality of
additional data stores are updated correspondingly with said
altered second information.

43. The system according to claim 42, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores are configured to cause updates of said first
local copy and said additional local copy in each of said
plurality of additional data stores to propagate according to a
pattern.

44. The system according to claim 43, wherein said pattern
is a ring.

45. The system according to claim 43, wherein said pattern
is a multiring.

46. The system according to claim 45, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores, collectively, have a capability to reconfig-
ure said pattern.

47. The system according to claim 46, wherein said recon-
figuration capability can be selectively invoked to swap a
selected two of said first data store, said second data store, and
said plurality of additional data stores.

US 9,240,955 B1

59

48. The system according to claim 47, wherein said recon-
figuration capability also includes a capability to select said
selected two of said first data store, said second data store, and
said plurality of additional data stores.

49. The system according to claim 44, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprises respectively a testing
module, wherein said testing modules have the capability to
collectively perform a test of resources available to a set of
ringed computers selected from the group comprised of said
first computer, said second computer, and said plurality of
additional computers, each respective one of said set of com-
puters associated with a respective one of said testing mod-
ules, and wherein an initiating one of said testing modules in
said set of ringed computers has the capability to initiate said
test for testing in other ringed computers in said set of ringed
computers and to calculate a result based on said test.

50. The system according to claim 45, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprises respectively a testing
module, wherein said testing modules have the capability to
collectively perform a test of resources available to a set of
ringed computers selected from the group comprised of said
first computer, said second computer, and said plurality of
additional computers, each respective one of said set of com-
puters associated with a respective one of said testing mod-
ules, and wherein an initiating one of said testing modules in
said set of ringed computers has the capability to initiate said
test for testing in other ringed computers in said set of ringed
computers and to calculate a result based on said test.

51. The system according to claim 33, wherein said second
one of said first one or more evaluating processes is capable of
evaluating said data to synthesize a next result using said first
set of instructions.

52. The system according to claim 51, wherein said second
one of said first one or more evaluating processes is capable of
storing said next result as said data in said global address
space via said first communication system.

53. The system according to claim 33, wherein said second
control process is capable of deploying a first one of said
second one or more logic processes with a second set of
instructions, and wherein said first one of said second one or
more logic processes is capable of causing a first one of said
second one or more evaluating processes to begin executing
said second set of instructions.

54. The system according to claim 53, wherein said first
one of said second one or more evaluating processes is
capable of evaluating said data to synthesize a second result
using said second set of instructions.

55. The system according to claim 54, wherein said first
one of said second one or more evaluating processes is
capable of storing said second result as said data in said global
address space via said second communication system.

56. The system according to claim 33, wherein said first
control process has a capability to deactivate said first one or
more logic processes.

57. The system according to claim 55, wherein said first
control process has a capability to deactivate said first one or
more logic processes.

58. The system according to claim 56, wherein said first
control process is capable of deploying a second one of said
first one or more logic processes with a next set of instruc-
tions, wherein said second one of said first one or more logic
processes is capable of causing a second one of said first one
or more evaluating processes to begin executing said next set
of instructions.

30

35

40

45

50

55

60

60

59. The system according to claim 57, wherein said first
control process is capable of deploying a second one of said
first one or more logic processes with a next set of instruc-
tions, wherein said second one of said first one or more logic
processes is capable of causing a second one of said first one
or more evaluating processes to begin executing said next set
of instructions.

60. The system according to claim 58, wherein said second
one of said first one or more logic processes can replace said
first one of said first one or more logic processes without loss
of information.

61. The system according to claim 59, wherein said second
one of said first one or more logic processes can replace said
first one of said first one or more logic processes without loss
of information.

62. The system according to claim 33, wherein said
deployer sends said one or more control messages to said first
control process via said global address space.

63. The system according to claim 33, wherein said code is
compiled code.

64. The system according to claim 63, wherein said com-
piled code is java bytecode.

65. The system according to claim 33, wherein said code is
uncompiled source code.

66. The system according to claim 33, wherein said first
control process is capable of deploying a second one of said
first one or more logic processes with a next set of instruc-
tions, wherein said second one of said first one or more logic
processes is capable of causing a second one of said first one
or more evaluating processes to begin executing said next set
of instructions.

67. The system according to claim 66, wherein said second
one of said first one or more logic processes can replace said
first one of said first one or more logic processes without loss
of information.

68. The system according to claim 1, further comprising a
plurality of additional networked nodes, each additional net-
worked node comprising an additional computer and an addi-
tional data store, each of said plurality of additional data
stores providing access to said global address space, wherein
said first networked node, said second networked node, and
said plurality of additional networked nodes are networked
together.

69. The system according to claim 68, wherein when
altered data is input into said data in any one of said first data
store, said second data store, and said plurality of additional
data stores, then said altered data is transmitted according to
a pattern to all other of said first data store, said second data
store, and said plurality of additional data stores.

70. The system according to claim 69, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprises respectively atesting
module, wherein said testing modules have the capability to
collectively perform a test of resources available to a set of
ringed computers selected from the group comprised of said
first computer, said second computer, and said plurality of
additional computers, each respective one of said set of com-
puters associated with a respective one of said testing mod-
ules, and wherein an initiating one of said testing modules in
said set of ringed computers has the capability to initiate said
test for testing in other ringed computers in said set of ringed
computers and to calculate a result based on said test.

71. The system according to claim 70, wherein each of said
first data store, said second data store, and said plurality of
additional data stores has a capability to temporarily prevent
said transmission of said altered data from occurring.

US 9,240,955 B1

61

72. The system according to claim 70, wherein each of said

first data store, said second data store, and said plurality of
additional data stores has a capability to use said result to
determine whether to invoke said capability to temporarily
prevent said transmission of said altered data from occurring.

73. The system according to claim 72, wherein said test

comprises the steps of:

(1) initiating said test and recording a current time in said
initiating one of said testing modules;

(2) attempting transmission of one or more initiated test
packets to a first one of said testing modules associated
with a first other ringed computer;

(3) repeating, for each additional one of said testing mod-
ules of said other ringed computers:

(a) receiving a received one or more of said initiated test
packets by a current one of said testing modules of said
other ringed computers;

(b) measuring, for each received test packet, availability of
resources to a current one of said other ringed computers
associated with said current testing module;

(c) recording, in each of said received test packets, a
resource measurement representing said availability of
resources; and

(d) attempting transmission of each received test packet to
a next one of said testing modules of said other ringed
computers according to said pattern;

(4) receiving, by said initiating one of said testing modules,
a set of returned test packets of said one or more initiated
test packets;

10

15

20

25

62

(5) measuring, for each of said returned test packets, an
amount of time representing time elapsed after initiation
of said test; and

(6) calculating said result using said amount of time asso-
ciated with each of said returned test packets and using
each of said resource measurements associated with
each of said returned test packets.

74. The system according to claim 73, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores each further comprising a learning module,
wherein each of said learning modules has a capability to
learn from said tests.

75. The system according to claim 74, wherein each of said
learning modules has a capability to make predictions about
resource utilization.

76. The system according to claim 75, wherein said first
data store, said second data store, and said plurality of addi-
tional data stores have a capability to use said predictions in
determining whether to temporarily prevent communications
from being initiated.

77. The system according to claim 76, wherein said learn-
ing module learns using an algorithm suitable for a high-
dimensional setting.

78. The system according to claim 77, wherein said algo-
rithm is Vapnik’s Support Vector Machine algorithm.

#* #* #* #* #*

